Investigations of Substituent Effects by Nuclear Magnetic Resonance Spectroscopy and All-valence Electron Molecular Orbital Calculations. I, 4-Substituted Styrenes

1973 ◽  
Vol 51 (6) ◽  
pp. 897-914 ◽  
Author(s):  
Gordon K. Hamer ◽  
Ian R. Peat ◽  
William F. Reynolds

1H and 13C chemical shifts have been determined for over 20 4-substituted styrenes under conditions corresponding to infinite dilution in a non-polar medium. Correlations of the internal chemical shift difference for the β vinyl protons, Δδ(B − C) with electric field components estimated by a classical electrostatic calculation, with the field parameter F, and with hydrogen charge densities estimated by CNDO/2 MO calculations provide conclusive evidence for the existence of a through-space field effect. CNDO/2 calculations for 4-substituted 1-vinylbicyclo[2.2.2]octanes and ethylene–methylX pairs indicate that this through-space field effect has a geometric dependence similar to that predicted by the Buckingham equation.Correlations of vinyl 1H and 13C chemical shifts and charge densities with field, F, and resonance, R, parameters provide a self-consistent picture of electronic effects in these compounds. 1H chemical shifts for some derivatives are affected by magnetic effects but this does not obscure the overall pattern of electronic effects. This pattern of electronic effects can be completely accounted for by a model which assumes that substituent effects can be transmitted through space (field effects), via conjugative interactions (resonance effects) or by polarization of the styrene π electron system by the polar C—X bond (π polarization effects). The latter effect appears to be more important than previously realized.1H correlations with F and R are used to estimate self-consistent and apparently reasonable Δχ values for C≡N and C≡C—H groups and F and R values for carbonyl substituents and (CH3)3M substituents (M = Si, Ge, Sn, and Pb). The halogens give anomalous results. A comparison of various correlations suggests that these anomalies are magnetic in origin.


1973 ◽  
Vol 51 (6) ◽  
pp. 915-926 ◽  
Author(s):  
Gordon K. Hamer ◽  
Ian R. Peat ◽  
W. F. Reynolds

Substituent-induced 1H chemical shifts (S.C.S.) for 19 4-substituted α-methyl- and α-t-butylstyrenes have been determined at infinite dilution in C6H12 and 13C S.C.S. have been determined for 0.4 M solutions in CCl4. S.C.S. are correlated with field and resonance substituent parameters and compared with charge densities determined by CNDO/2 MO calculations. The variation of S.C.S. with the dihedral angle, ρ, between phenyl and vinyl groups and the overall pattern of S.C.S. can be largely accounted for by a model of substituent effects based on field, resonance, and π polarization effects, with conjugative interactions varying as cos2ρ. Both 13C chemical shifts and charge densities indicate that the π polarization effect consists of two components: (1) a through-space polarization of the vinyl system by the polar C—X bond and (2) polarization of the entire conjugated styrene π electron system. However, significant deviations are noted for some of the 1H S.C.S. correlations. The CNDO/2 calculations indicate that these deviations are primarily due to electronic effects not predicted by the model outlined above. CNDO/2 calculations for related compounds provide a partial explanation by indicating that the magnitude of the field effect depends upon the nature of the molecular framework.



1975 ◽  
Vol 53 (3) ◽  
pp. 373-382 ◽  
Author(s):  
Daniel A. Dawson ◽  
William F. Reynolds

13C and 1H spectra have been determined for 18 4-substituted phenylacetylenes and carbon charge densities have been estimated by CNDO/2 molecular orbital calculations. Correlations of these parameters with σ1, and σR0 indicate that the important mechanisms of transmission of substituent effects are field, resonance, and π polarization effects, as previously noted for 4-substituted styrenes. Evidence is presented that demonstrates that both 1H and 13C chemical shifts for these compounds reflect ground state charge densities. CNDO/2 calculations on a variety of aromatic derivatives suggest that the σ1, dependence of 19F chemical shifts in these derivatives may primarily be due to π polarization.



2003 ◽  
Vol 68 (7) ◽  
pp. 525-534 ◽  
Author(s):  
Natasa Valentic ◽  
Gordana Uscumlic

The principle of linear free energy relationships was applied to the 1H chemical shifts of the ?-vinyl proton atoms of 3-methylene-2-substituted-1,4-pentadienes. The correlations of the proton chemical shifts with Swain and Lupton substituent parameters provide a mutually consistent picture of the electronic effects in these compounds. The overall pattern of proton chemical shifts can be largely accounted for by a model of substituent effects based on field, resonance and ? polarization effects. Owing to the particular geometric arrangement of the vinyl group in 3-methylene-2-substituted-1,4-pentadienes, the ?-vinyl protons HB and HC have different sensitivities to polar and resonance effects. The different sensitivities of the 1H chemical shifts to resonance effects reveals some effects not predicted by the model outlined above. Evidence is presented that demonstrates that both the 1H and 13C chemical shifts for these compounds reflect their ground-state charge densities.



1980 ◽  
Vol 58 (8) ◽  
pp. 839-845 ◽  
Author(s):  
William F. Reynolds ◽  
Victoria G. Gibb ◽  
Nick Plavac

19F, 13C, and 1H chemical shifts have been determined for β,β-difluorostyrene and eight 4-substituted derivatives. The β-fluorine chemical shift difference, ΔδF, is used to evaluate the constant in the Buckingham equation. A = 3.0 × 10−11 esu for C—F bonds which is in excellent agreement with the value derived by Adcock and Khor. This allows accurate estimates of direct field effect contributions to 19F chemical shifts in aryl fluorides. Substituent parameter correlations demonstrate that the primary polar effect on 19F chemical shifts is field-induced π polarization. Abinitio molecular orbital calculations confirm that the substituent-induced 19F chemical shifts reflect changes in fluorine π electron density.



1977 ◽  
Vol 55 (9) ◽  
pp. 1567-1574 ◽  
Author(s):  
Paul G. Mezey ◽  
William F. Reynolds

Ab initio (STO-3G) molecular orbital calculations for 4-substituted benzoic acids and XCH3–HCO2H pairs are used to derive a theoretical field, TF and resonance, TR(BA), substituent scale. Comparison with previous calculations for 4-substituted styrenes shows that a common field scale can be used for different systems but that different resonance scales are necessary, depending upon the electronic nature of the probe group. The field effect primarily reflects the direct electrostatic interaction between the substituent and the carboxylic acid. However, there are also significant contributions due to field-induced polarization of the intervening phenyl π electron system. By contrast, the π polarization effect seems to be the dominant field effect in the case of non-interacting probes (such as carbon atomic charges or chemical shifts). A very close parallel is noted between substituent effects upon atomic charges and acid dissociation energies.



1975 ◽  
Vol 53 (4) ◽  
pp. 596-603 ◽  
Author(s):  
Roderick E. Wasylishen ◽  
Thomas R. Clem ◽  
Edwin D. Becker

Carbon-13 and proton chemical shifts have been measured for several monosubstituted isothiazoles. Substituent effects upon these chemical shifts are compared with those observed for monosubstituted benzenes, pyridines, and thiophenes. In general the observed substituent effects in the isothiazoles and thiophenes closely parallel one another. Correlations between the observed carbon-13 Chemical shifts and CNDO/2 calculated charge densities are examined.





1976 ◽  
Vol 31 (12) ◽  
pp. 1641-1645 ◽  
Author(s):  
Walter Grahn

The 13C NMR chemical shifts of fifteen 6 substituted 2,3-dihydro-1,4-diazepinium salts (cis trimethincyanines) (1) and twelve 2 substituted bis(dimethylamino)trimethinium salts (trans trimethincyanines) (2) have been determined. A comparison of the substituentinduced shifts (13C SCS) of 1 and 2 allows no distinction between steric and electronic effects. In the three 6 п-electron systems 1, 2 and monosubstituted benzenes the 13C SCS are similar for the substituent bearing carbon atoms. A surprisingly large 4JFCCNC coupling constant has been observed.



Sign in / Sign up

Export Citation Format

Share Document