An investigation into the origins of polar substituent effects upon 19F chemical shifts, using 4-substituted β,β-difluorostyrenes

1980 ◽  
Vol 58 (8) ◽  
pp. 839-845 ◽  
Author(s):  
William F. Reynolds ◽  
Victoria G. Gibb ◽  
Nick Plavac

19F, 13C, and 1H chemical shifts have been determined for β,β-difluorostyrene and eight 4-substituted derivatives. The β-fluorine chemical shift difference, ΔδF, is used to evaluate the constant in the Buckingham equation. A = 3.0 × 10−11 esu for C—F bonds which is in excellent agreement with the value derived by Adcock and Khor. This allows accurate estimates of direct field effect contributions to 19F chemical shifts in aryl fluorides. Substituent parameter correlations demonstrate that the primary polar effect on 19F chemical shifts is field-induced π polarization. Abinitio molecular orbital calculations confirm that the substituent-induced 19F chemical shifts reflect changes in fluorine π electron density.

2005 ◽  
Vol 60 (4) ◽  
pp. 265-270
Author(s):  
Salim Y. Hanna ◽  
Salim M. Khalil ◽  
Moafaq Y. Shandala

Abstract Optimized geometrical parameters, electron densities, heats of formation and stabilization energies have been obtained on X-substituted phenylallyl alcohols, where X is H, OCH3, NH2, CN, F and CH3 at ortho, meta, and para positions, using MINDO-Forces SCF-molecular orbital calculations. The substituent effects on the geometrical parameters and the electron density are discussed.


1973 ◽  
Vol 51 (6) ◽  
pp. 897-914 ◽  
Author(s):  
Gordon K. Hamer ◽  
Ian R. Peat ◽  
William F. Reynolds

1H and 13C chemical shifts have been determined for over 20 4-substituted styrenes under conditions corresponding to infinite dilution in a non-polar medium. Correlations of the internal chemical shift difference for the β vinyl protons, Δδ(B − C) with electric field components estimated by a classical electrostatic calculation, with the field parameter F, and with hydrogen charge densities estimated by CNDO/2 MO calculations provide conclusive evidence for the existence of a through-space field effect. CNDO/2 calculations for 4-substituted 1-vinylbicyclo[2.2.2]octanes and ethylene–methylX pairs indicate that this through-space field effect has a geometric dependence similar to that predicted by the Buckingham equation.Correlations of vinyl 1H and 13C chemical shifts and charge densities with field, F, and resonance, R, parameters provide a self-consistent picture of electronic effects in these compounds. 1H chemical shifts for some derivatives are affected by magnetic effects but this does not obscure the overall pattern of electronic effects. This pattern of electronic effects can be completely accounted for by a model which assumes that substituent effects can be transmitted through space (field effects), via conjugative interactions (resonance effects) or by polarization of the styrene π electron system by the polar C—X bond (π polarization effects). The latter effect appears to be more important than previously realized.1H correlations with F and R are used to estimate self-consistent and apparently reasonable Δχ values for C≡N and C≡C—H groups and F and R values for carbonyl substituents and (CH3)3M substituents (M = Si, Ge, Sn, and Pb). The halogens give anomalous results. A comparison of various correlations suggests that these anomalies are magnetic in origin.


1968 ◽  
Vol 22 (5) ◽  
pp. 506-512 ◽  
Author(s):  
Norman E. Sharpless ◽  
Robert B. Bradley

The nuclear magnetic resonance spectra of the aromatic protons of DDT and 31 of its analogs and derivatives have been analyzed. Chemical shifts of these molecules are functions of the electronegativities of the substituents on the ring, as well as those in the aliphatic portion, although substitution of the ring chlorine in DDT by either a nitro or a t-butyl group leads to anomalous values. Molecular orbital calculations show that the chemical shift of the proton ortho to the ring substituent depends upon the π electron density at the corresponding carbon, but the chemical shift of the proton meta to this substituent is independent of the π electron density at the corresponding carbon. The data also indicate that the two aromatic rings in DDT are independent of each other.


1977 ◽  
Vol 55 (9) ◽  
pp. 1567-1574 ◽  
Author(s):  
Paul G. Mezey ◽  
William F. Reynolds

Ab initio (STO-3G) molecular orbital calculations for 4-substituted benzoic acids and XCH3–HCO2H pairs are used to derive a theoretical field, TF and resonance, TR(BA), substituent scale. Comparison with previous calculations for 4-substituted styrenes shows that a common field scale can be used for different systems but that different resonance scales are necessary, depending upon the electronic nature of the probe group. The field effect primarily reflects the direct electrostatic interaction between the substituent and the carboxylic acid. However, there are also significant contributions due to field-induced polarization of the intervening phenyl π electron system. By contrast, the π polarization effect seems to be the dominant field effect in the case of non-interacting probes (such as carbon atomic charges or chemical shifts). A very close parallel is noted between substituent effects upon atomic charges and acid dissociation energies.


1975 ◽  
Vol 53 (3) ◽  
pp. 373-382 ◽  
Author(s):  
Daniel A. Dawson ◽  
William F. Reynolds

13C and 1H spectra have been determined for 18 4-substituted phenylacetylenes and carbon charge densities have been estimated by CNDO/2 molecular orbital calculations. Correlations of these parameters with σ1, and σR0 indicate that the important mechanisms of transmission of substituent effects are field, resonance, and π polarization effects, as previously noted for 4-substituted styrenes. Evidence is presented that demonstrates that both 1H and 13C chemical shifts for these compounds reflect ground state charge densities. CNDO/2 calculations on a variety of aromatic derivatives suggest that the σ1, dependence of 19F chemical shifts in these derivatives may primarily be due to π polarization.


1978 ◽  
Vol 31 (11) ◽  
pp. 2399 ◽  
Author(s):  
CJ Hawkins ◽  
GA Lawrance ◽  
JA Palmer

The circular dichroism spectra are reported for tetraamminecobalt(III) complexes with the chiral amino alcohols 2-aminopropan-1-ol, 2- aminobutan-1-ol, 1-aminopropan-2-ol, 2-amino-1-phenyl-ethanol, ψ- ephedrine and ephedrine with the alcohol groups protonated (OH) and deprotonated (O-). The solvent dependence of the chemical shifts of the NH protons was investigated to determine the effects of stereoselective solvation on the circular dichroism, but, in contrast to some other related systems, the chemical shift difference between the two NH2 protons was relatively insensitive to solvent. Consistent with this, the circular dichroism spectra of the tetraphenylborate salts of the deprotonated complexes were found not to be markedly dependent on solvent. Tetraammine-{(-)-ψ-ephedrine)cobalt(III) and tetraammine{(-)- ephedrine}cobalt(III) were found to have the same signs of Cotton effects for the various d-d transitions, whereas bis{(-)-ψ- ephedrine}copper(II) and bis{(-)-ephedrine}copper(II) had opposite signs. This has been explained in terms of different conformer populations in the cobalt(III) and copper(II) systems.


1974 ◽  
Vol 27 (2) ◽  
pp. 417 ◽  
Author(s):  
D Doddrell ◽  
KG Lewis ◽  
CE Mulquiney ◽  
W Adcock ◽  
W Kitching ◽  
...  

13C chemical shift variations within a series of phenyl, furyl and thienyl Group IVB organometallics appear to be best understood in terms of the usual alkyl and aryl substituent effects on 13C chemical shifts and not variations in dπ ?pπ metal-aryl interactions. Large changes in 13C-metal scalar coupling constants have been observed suggesting that other factors besides the s-character of the carbon-metal bond is responsible in determining the coupling constant.


Sign in / Sign up

Export Citation Format

Share Document