Investigation of Factors Affecting Conformational Preference in Complex Haloethane Derivatives by Classical Energy Calculations
Classical energy calculations are used in combination with Abraham's electrostatic theory of solvation energy to estimate rotamer energy differences for haloethane derivatives. The calculations are tested by comparing experimental and calculated ΔE values for several di- and tetrahaloethanes. There is good agreement for chloro and bromo derivatives but poorer agreement for fluoro and iodo derivatives. ΔE values in solution are also estimated for l4 complex chloro- and bromoethanes which we have previously investigated by n.m.r. spectroscopy. The calculations generally parallel the experimental results as reflected by vicinal coupling constants. They are particularly useful for trends in conformational preference for closely related compounds and are used in conjunction with vicinal coupling constants to identify diastereomers produced by halogenation of alkenes. Steric interactions, dipole–dipole interactions and solvation energy are all important in determining conformational preference for complex haloethanes in solution.