Stereochemical dependence of 13C shieldings and 13C–31P couplings in phosphonates of known geometry. Is there a Karplus-type relationship for P–C–C–C coupling?

1976 ◽  
Vol 54 (2) ◽  
pp. 231-237 ◽  
Author(s):  
Gerald W. Buchanan ◽  
Claude Benezra

13C nmr chemical shifts and 13C–31P couplings through one to five bonds are reported for seven dimethylphosphono compounds of known geometry. Vicinal couplings are maximal for a dihedral angle of 180° and are severely attenuated by OH substitution, particularly when the OH is trans-coplanar to the carbon terminus of the coupling path. When a cyclopropyl system is part of the C–C–C–P path the J values are much less than those predicted on the basis of dinedral angle. A highly asymmetric dihedral dependence of vicinal J's is suggested. Some 'non-W' long range C–P couplings through saturated networks are found. The 'gauche-γ' shift of the —P(O)(OCH3)2 group is about 2 ppm.


2012 ◽  
Vol 26 (3) ◽  
pp. 249-255 ◽  
Author(s):  
Zhengjun Fang ◽  
Chenzhong Cao ◽  
Weihe Wu ◽  
Lu Wang


1980 ◽  
Vol 58 (8) ◽  
pp. 815-822 ◽  
Author(s):  
K. Lindström ◽  
F. Österberg

3,4,5-Trichloroguaiacol, which is formed during bleaching of chemical pulp and shown to bioaccumulate in fish, has been synthesized. The structure of the compound has been determined by means of X-ray analysis. The values of the 13C nmr chemical shifts and melting point differ from those previously reported. A reaction mechanism is suggested for the formation of 3,4,5- and 4,5,6-trichloroguaiacol.



2017 ◽  
Vol 55 (11) ◽  
pp. 990-995 ◽  
Author(s):  
Dmitry O. Samultsev ◽  
Yury Yu. Rusakov ◽  
Leonid B. Krivdin


1999 ◽  
Vol 77 (5-6) ◽  
pp. 525-529 ◽  
Author(s):  
GK Surya Prakash ◽  
Golam Rasul ◽  
George A Olah ◽  
Ronghua Liu ◽  
Thomas T Tidwell

The hitherto elusive mono-O-protonated deltic acid C3O3H3+ was prepared by protolysis of di-tert-butoxy deltate in FSO3H-SO2ClF and in FSO3H:SbF5 (Magic Acid; 1:1 molar solution) in SO2ClF as solvent at -78°C and was characterized by 1H and 13C NMR spectroscopy. The structure and NMR chemical shifts were also calculated by the ab initio/IGLO method. No NMR evidence was found for persistent di-O-protonated deltic acid under these conditions, although a limited equilibrium with the mono-O-protonated species can be involved. Di-, tri-, and tetra-O-protonated deltic acids were also studied by ab initio/IGLO method.Key words: protonated deltic acid, aromaticity, superacids, NMR spectroscopy, ab initio and IGLO calculations.



1976 ◽  
Vol 31 (12) ◽  
pp. 1641-1645 ◽  
Author(s):  
Walter Grahn

The 13C NMR chemical shifts of fifteen 6 substituted 2,3-dihydro-1,4-diazepinium salts (cis trimethincyanines) (1) and twelve 2 substituted bis(dimethylamino)trimethinium salts (trans trimethincyanines) (2) have been determined. A comparison of the substituentinduced shifts (13C SCS) of 1 and 2 allows no distinction between steric and electronic effects. In the three 6 п-electron systems 1, 2 and monosubstituted benzenes the 13C SCS are similar for the substituent bearing carbon atoms. A surprisingly large 4JFCCNC coupling constant has been observed.



Author(s):  
Frans J. Hoogesteger ◽  
David M. Grove ◽  
Leonardus W. Jenneskens ◽  
Theodorus J. M. de Bruin ◽  
Bart A. J. Jansen


2006 ◽  
Vol 61 (10-11) ◽  
pp. 600-606
Author(s):  
Savitha M. Basappa ◽  
Basavalinganadoddy Thimme Gowda

Twenty six N-(2/3/4-substituted phenyl)-2,4-disubstituted benzenesulphonamides of the general formulae 2,4-(CH3)2C6H3SO2NH(i-XC6H4), 2-CH3-4-ClC6H3SO2NH(i-XC6H4) and 2,4- Cl2C6H3SO2NH(i-XC6H4), where i-X = H, 2-CH3, 3-CH3, 4-CH3, 2-Cl, 3-Cl, 4-Cl, 4-F or 4-Br, have been prepared, characterized and their infrared spectra in the solid state and 1H and 13C NMR spectra in solution studied. The infrared N-H stretching vibrational frequencies vary in the range 3298 - 3233 cm−1. Asymmetric and symmetric SO stretching vibrations appear in the ranges 1373 - 1311 cm−1 and 1177 - 1140 cm−1, respectively, while C-S, S-N and C-N stretching absorptions vary in the ranges 840 - 812 cm−1, 972 - 908 cm−1 and 1295 - 1209 cm−1, respectively. The various 1H and 13C NMR chemical shifts are assigned to the protons and carbon atoms of the two benzene rings in line with those for similar compounds. The incremental shifts due to the groups in the parent compounds have been computed by comparing the chemical shifts of the protons or carbon atoms in these compounds with those of benzene or aniline, respectively. The computed incremental shifts and other data were used to calculate the 1H and 13C NMR chemical shifts of the substituted compounds in three different ways. The calculated chemical shifts by the three methods compared well with each other and with the observed chemical shifts. It is observed that there are no particular trends in the variation of either the infrared absorption frequencies or the chemical shifts with the nature or site of substitution.



Sign in / Sign up

Export Citation Format

Share Document