scholarly journals A study of 13C–15N couplings and revised 13C shieldings in 15N-enriched E-acetophenone oximes

1976 ◽  
Vol 54 (5) ◽  
pp. 790-794 ◽  
Author(s):  
Gerald W. Buchanan ◽  
Brian A. Dawson

13C nmr chemical shifts and 13C–15N couplings through one, two, and three bonds are reported for E-acetophenone oxime and five para-substituted derivatives. It is shown that earlier assignments for three of these compounds, based on lanthanide induced shifts and CNDO calculations, are erroneous. With the exception of the methoxyl group, couplings are relatively insensitive to the nature of the para-function. For geminal 13C–15N interactions, the proximity of the nitrogen lone pair to the carbon terminus greatly enhances the absolute value of the coupling constant.

1979 ◽  
Vol 57 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Gerald W. Buchanan ◽  
Frederick G. Morin

13C chemical shifts and 13C–31P couplings are reported for 11 cyclic phosphoramidates of ring sizes from four to nine. Vicinal couplings are compared with those of carbocyclic analogs and provide insight regarding the degree of nitrogen lone pair derealization into the N—P bond. For six-membered and larger rings, there appears to be nearly complete lone pair delocalization, i.e., a trigonal planar nitrogen atom. In azetidine derivatives the nitrogen lone pair remains localized, giving rise to a highly puckered ring conformation. Pyrrolidine derivatives are viewed as having a nitrogen with a partially delocalized electron pair.


1967 ◽  
Vol 20 (6) ◽  
pp. 1227 ◽  
Author(s):  
TM Spotswood ◽  
CI Tanzer

The analysis of the n.m.r, spectra of 2,2?-, 3,3?-, and 4,4?-bipyridyl and three dimethyl-2,2?-bipyridyls is reported and the factors determining the relative chemical shifts of the ring protons and methyl groups in several solvents are discussed. The diamagnetic anisotropy of the neighbouring ring and electrostatic field effect of the nitrogen lone pair electrons are shown to be of roughly equal importance for derivatives of 2,2?-bipyridyl except in hydrogen bonding solvents. Attenuation of the electrostatic field effect in polar, and particularly in hydrogen bonding solvents, is established for 4- picoline, and for the bipyridyls, and this effect is responsible for striking changes in the spectrum of 2,2?-bipyridyl in hydrogen bonding solvents. An approximate interplanar angle of 58� is derived for 3,3?- dimethyl-2,2?-bipyridyl, and 2,2?-bipyridyl and its 4,4?- and 5,5?- dimethyl derivatives appear to be trans coplanar in all solvents. 3,3?- Bipyridyl and 4,4?-bipyridyl are probably highly twisted in all solvents, or alternatively, behave as essentially free rotors. The predicted conformations are in good agreement with the electronic spectral data.


1976 ◽  
Vol 31 (12) ◽  
pp. 1641-1645 ◽  
Author(s):  
Walter Grahn

The 13C NMR chemical shifts of fifteen 6 substituted 2,3-dihydro-1,4-diazepinium salts (cis trimethincyanines) (1) and twelve 2 substituted bis(dimethylamino)trimethinium salts (trans trimethincyanines) (2) have been determined. A comparison of the substituentinduced shifts (13C SCS) of 1 and 2 allows no distinction between steric and electronic effects. In the three 6 п-electron systems 1, 2 and monosubstituted benzenes the 13C SCS are similar for the substituent bearing carbon atoms. A surprisingly large 4JFCCNC coupling constant has been observed.


1972 ◽  
Vol 27 (2) ◽  
pp. 310-319
Author(s):  
H.-H. Perkampus ◽  
Th. Bluhm ◽  
J. Knop

AbstractProton chemical shifts in styryldiazines and diazaphenanthrenes linearly correlate with SCF-π-electron densities of the attached carbon atom and with the electron densities of the hydrogen atom (calculated by the CNDO/2 method). The observed deviations from linearity are discussed in terms of ring current effect, steric effects and the paramagnetic effect of the nitrogen lone pair electrons. An appreciable weakening of ring current is found for diazaphenanthrenes with two adjacent N-atoms. Under the same condition the paramagnetic effect on ortho-hydrogens is increased.


1957 ◽  
Vol 35 (11) ◽  
pp. 1351-1365 ◽  
Author(s):  
L. W. Reeves

A modified assignment of the PMR signals in acetylacetone is confirmed. The changes in intensity of selected signals with temperature are used to calculate an enthalpy of conversion of 2700 ± 100 cal. between keto and enol forms in pure acetylacetone.Interactions, which perturb the equilibrium between the tautomeric forms in dilute solution by formation of solution complexes, are studied by observing dilution chemical shifts in various solvents. The ratio of keto to enol forms is estimated from measurements of signal intensities at several dilutions in each solvent. The deviations from the correlations of Bernstein and Powling (5) between solvent dielectric constant and molar volume, and the position of the tautomeric equilibrium in dilute solutions, have been used as a criterion of solvent interaction. They are consistent with the present measurements.Typical basic, acidic, amphoteric, and neutral solvents have been chosen to investigate possible types of interaction. Cyclohexane and acetic acid do not perturb the equilibrium by any interactions. Triethylamine forms a hydrogen bonded complex through the enolic—OH group and the nitrogen lone pair, thus converting acetylacetone completely to enol form. Pyrrole forms a weakly hydrogen bonded complex through the carbonyl oxygens of the keto form. Freezing diagrams in the interacting systems are consistent with the complexes suggested by the PMR measurements.


2002 ◽  
Vol 2002 (1) ◽  
pp. 34-36
Author(s):  
José Elguero ◽  
Alain Fruchier ◽  
María Luisa Jimeno ◽  
Pedro Molina

The 13C NMR spectra of the bromide of the protonated iminophosphorane -substituted sponge 7 were recorded at different fields. Together with the use of 13C satellites of the 31P NMR spectrum, these experiments allow determination of a reasonable set of chemical shifts and coupling constants. The most interesting are a 4h JPP = 1.6 Hz, determined directly from the 31P NMR spectrum, which probably involves the hydrogen bond, and a 2Δ31P(13C) isotope shift of 9 ppb.


1987 ◽  
Vol 65 (8) ◽  
pp. 1784-1794 ◽  
Author(s):  
Jacinta Drew ◽  
Jean-Robert Brisson ◽  
Peter Morand ◽  
Arthur G. Szabo

A number of fluorescent steroids with unsaturated sidechains have been analyzed by high resolution 1H and 13C nmr spectroscopy. The geometry of the olefinic systems was assigned on the basis of 1H–1H shift-correlated spectra (COSY) and selected nOe difference experiments. For one of these compounds, a 13C–1H shift-correlated spectrum, a COSY spectrum, a 1H J-resolved spectrum as well as nOe experiments on the angular methyl groups permitted complete ring proton assignment and coupling constant analysis. The high degree of similarity of the ring carbon 13C chemical shifts of these steroids and cholesterol would indicate that the former have the potential for use as fluorescent probes of cholesterol domains in membranes.


1994 ◽  
Vol 72 (3) ◽  
pp. 514-518 ◽  
Author(s):  
Brian G. Gowenlock ◽  
Mailer Cameron ◽  
Alan S.F. Boyd ◽  
Baheeja M. Al-Tahou ◽  
Paul McKenna

The carbon-13 chemical shifts of several substituted nitrosobenzenes are reported. It is shown that the NO group can be orientated to lie in the plane of the ring when constrained either by a bulky ortho substituent or in the solid state. In the presence of 2,6-di-tert-butyl substituents the NO group is twisted into orthogonality with the ring. The changes in the 13C chemical shifts are larger for the NO group than for other functional groups. It is suggested that these effects are a consequence of the electronic character of the NO group and that the nitrogen lone pair of electrons is of fundamental importance in producing these unique effects. The dimeric nitroso functional group does not display these properties.


1988 ◽  
Vol 53 (3) ◽  
pp. 588-592 ◽  
Author(s):  
Antonín Lyčka ◽  
Josef Jirman ◽  
Jaroslav Holeček

The 17O and 13C NMR spectra of eight geminal diacetates RCH(O(CO)CH3)2 derived from simple aldehydes have been measured. In contrast to the dicarboxylates R1R2E(O(CO)R3)2, where E = Si, Ge, or Sn, whose 17O NMR spectra only contain a single signal, and, on the other hand, in accordance with organic carboxylic esters, the 17O NMR spectra of the compound group studied always exhibit two well-resolved signals with the chemical shifts δ(17O) in the regions of 183-219 ppm and 369-381 ppm for the oxygen atoms in the groups C-O and C=O, respectively.


Sign in / Sign up

Export Citation Format

Share Document