Thermodynamics of transfer of p-nitroaniline from water to alcohol + water mixtures at 25 °C and the structure of water in these media

1977 ◽  
Vol 55 (23) ◽  
pp. 3961-3966 ◽  
Author(s):  
Kumardev Bose ◽  
Kiron K. Kundu

Free energies (ΔGt0) and entropies (ΔSt0) of transfer at 25 °C of the nonelectrolyte p-nitroaniline from water to various alcohol + water mixtures have been determined from solubility measurements at seven temperatures from 10–40 °C. Increasing specific solute–solvent interactions have been proposed to interpret the nature of the ΔGt0-composition profiles and the enhanced structure of water in the water-rich mixed solvents has been correlated with maxima in the ΔSt0-composition profiles. The effectiveness of p-nitroaniline as a useful probe for studying solvent structure has been pointed out.


1985 ◽  
Vol 63 (4) ◽  
pp. 798-803 ◽  
Author(s):  
Prabir K. Guha ◽  
Kiron K. Kundu

Standard free energies (ΔGt0) and entropies (ΔSt0) of transfer of HBr and HI from water to some aqueous solutions of 2-methoxy ethanol (ME) have been determined from emf measurements of the cells: Pt, H2 (g, 1 atm)/HBr (m), solvent/AgBr–Ag and Pt, H2 (g, 1 atm)/KOH (m1), KI (m2), solvent/AgI–Ag, respectively, at seven equidistant temperatures ranging from 15 to 45 °C. ΔGt0 values of HBr and HI as well as of HCl obtained from literature, and particularly that of the individual ions obtained by tetraphenylarsonium tetraphenylboron (TATB) assumption, suggest that while H+ is increasingly stabilized by cosolvent-induced larger "basicity", halide ions (X−) are increasingly destabilized by cosolvent-induced decreased "acidity" and the dielectric constant of the mixed solvents compared to that of water. Analysis of the variation of the observed TΔSt0(HX) and particularly of ΔY (= TΔSt0(H+) + TΔS0t.ch (X−), with composition, in the light of Kundu etal's semi-quantitative theory reveals that ME induces breakdown of three dimensional (3D) tetrahedral structures of water at water-rich compositions. This is being followed by an ordered region due to possible H-bonded cosolvent–water complexation and then the usual disordered region due to packing imbalance. Comparison of ΔY(HI)–composition profiles for aqueous mixtures of t-butanol (ButOH), ethylene glycol (EG), and 1,2-dimethoxy ethane (DME) also demonstrates that the remarkable enhancement of 3D water structures by the well known structure promoter ButOH gets succintly diminished when cosolvent ButOH is replaced by EG, ME, and DME, as is expected from structural and electronic considerations of the cosolvents.



1988 ◽  
Vol 66 (3) ◽  
pp. 461-468 ◽  
Author(s):  
Himansu Talukdar ◽  
Sibaprasad Rudra ◽  
Kiron K. Kundu

Standard free energies [Formula: see text] and entropies [Formula: see text] of transfer of glycine (G), diglycine (DG), and triglycine (TG), from water to aqueous mixtures of glycerol (GL) and urea (UH) have been determined from solubility measurements at different temperatures. This was also extended to an ionic cosolvent system like aqueous sodium nitrate solutions for G and DG. The observed [Formula: see text] and [Formula: see text]–composition profiles, as well as those obtained after correcting for the "cavity effect" as estimated by scaled particle theory (SPT), were examined in the light of various interactions. The corrected [Formula: see text]and [Formula: see text] values show a regular function of the peptide chain length of the amino acids and impart useful information regarding the involved relative structural effects of these ionic and non-ionic cosolvents.



1984 ◽  
Vol 62 (11) ◽  
pp. 2245-2248
Author(s):  
Amrita Lal De ◽  
Tapas Kumar De

Thermodynamic dissociation constants (sK) of p-nitroanilinium ion (BH+) have been determined at 25 °C in aqueous mixtures of 10, 30, 50, 70, and 90 wt.% of glycerol (GL) by spectrophotometric measurements. Standard free energies, [Formula: see text], of p-nitroaniline (B) from water to mixed solvents have been evaluated from the measurement of solubilities at 25 °C. p(sK) values decrease with increase in mol% of GL and pass through a minimum and then increase very slowly. The solvent effect on the dissociation, δ(ΔG0) = 2.303RT [p(sK)N – p(wK)N] has been discussed in terms of the standard free energies of transfer [Formula: see text] from water to aqueous mixtures of GL of the uncharged base (B), the hydrochloride of the base (BHCl), hydrochloric acid (HCl), and also in terms of the individual species involved in the dissociation process. The solvent effect in trihydric alcohol – water (GL + H2O) system has been compared with those in dihydric alcohol – water (ethylene glycol + water) and monohydric alcohol – water (ethanol + water) systems available from literature. The much less solvent effect in GL + H2O has been primarily attributed to the contrasting nature of interaction of H+ and of partially charged H atoms of—NH3+ group in BH+ compared to those in other two solvent systems.



Author(s):  
Esam A. GOMAA ◽  
Elsayed M. ABOU ELLEET ◽  
E. T. HELMY ◽  
Sh. M. DEFRAWY

The aim of this study was to determine the thermodynamic functions, Gibbs energy, enthalpy, and entropy for the solution processes of barium diphenylaminesulfonate in the mixed solvent (ethanol+water) were calculated from solubility values obtained at temperatures ranging from 293.15 K to 308.15 K. The respective thermodynamic, functions for mixing and solvation processes, as well as the activity coefficients for the solute were calculated. The solubility of solutes in mixed solvents depends primarily on the solvation of the solutes or their constituent ions by the components of the solvent mixtures. In this study, the solubility of this barium diphenyla1ninesuifonate in the mixed solvent (ethanol + water by value percent of ethanol= 0, 20, 40, 60, 80, and 100% by volume), was determined at different temperature by the solvent evaporation method. The results enable us to estimate the value of thermodynamic solubility product, Kop(th), of barium diphenylaminesulfonate in the mixed solvent. In addition, Gibbs energy, enthalpy, entropy for the solution processes, and free energies of transfer of barium diphenyla1ninesulfonate units from water to the ethanol solutions were also calculated in order to estimate the contributions of solute-solvent interactions related to ion association are based on changes in the electrostatic properties of the solvent, solute, and ion salvation as itself as on the ionic strength of the medium.



1988 ◽  
Vol 66 (3) ◽  
pp. 469-475
Author(s):  
Sibaprasad Rudra ◽  
Himansu Talukdar ◽  
Kiron K. Kundu

Autoionization constants (Ks) of aqueous mixtures of 1, 2, and 4 m sodium nitrate used as an ionic cosolvent system have been determined from emf measurements of the cell: Pt, H2 (g, 1 atm)/KOH (m1) KCl (m2), solvent/AgCl–Ag at five equidistant temperatures ranging from 15–35 °C. The standard free energies (ΔG0) and entropies (ΔS0) of autoionisation of the solvents were then evaluated from these data. Relative free energies (ΔG0) and entropies of (ΔS0)of autoionization of the solvents when coupled with the previously determined transfer free energies [Formula: see text] and entropies [Formula: see text] of H+ yielded [Formula: see text][Formula: see text],[Formula: see text] and [Formula: see text]. Values of [Formula: see text] and [Formula: see text] obtained after correcting for [Formula: see text], as well as [Formula: see text] and [Formula: see text]obtained after correcting the "cavity effect" and Born-type electrostatic effect suggests that while the "basicity" of the aqueous NaNO3 solutions decreases, the "acidity" more or less increases with NaNO3 concentration. The observed [Formula: see text]– and [Formula: see text]–composition profiles were also examined in the light of Kundu et al.'s four-step transfer process and the involved order–disorder phenomena, respectively, as proposed earlier.Standard free energies [Formula: see text] and entropies [Formula: see text] of transfer of p-nitroaniline (pNA) and benzoic acid (HBz) for the solvent system have also been determined from solubility measurements at different temperatures. The observed [Formula: see text]–and [Formula: see text]–composition profiles appear to reflect the salting-out effect of the salt and the [Formula: see text]–and [Formula: see text]–composition profiles confirm the applicability of either of these quantities rather than [Formula: see text], as a better structural probe both for aquo-ionic and aquo-organic solvents.



2003 ◽  
Vol 217 (6) ◽  
pp. 637-652 ◽  
Author(s):  
Jianji Wang ◽  
Yang Zhao ◽  
Kelei Zhuo ◽  
Ruisen Lin

AbstractViscosities of LiClO4 and LiBr have been measured in solvent mixtures of propylene carbonate (PC) with dimethylformamide (DMF), tetrahydrofuran (THF), acetonitrile (AN) and methyl formate (MF) at 298.15K. The dependence of viscosity on the composition of the mixed solvents was fitted with an equation without adjustable parameter. Viscosity B-coefficients for lithium salts and the corresponding activation free energies (Δμ0,≠) for viscous flow have been evaluated. At the same time, viscosity B-coefficients were predicted by the dielectric friction theory. The unsuccessful prediction of the composition dependence of the B-coefficients indicates that improvements will be necessary on the theory with taking account of the short-range interaction and molecular nature of the solvents. Furthermore, solute–solvent interactions in these mixed solvents are discussed in terms of the B-coefficients and activation parameters.



1981 ◽  
Vol 59 (22) ◽  
pp. 3149-3156 ◽  
Author(s):  
Jayati Datta ◽  
Kiron K. Kundu

Standard free energies (ΔGt0) and entropies (ΔSt0) of transfer of hydrogen iodide from water to some aqueous solutions of tetrahydrofuran (THF), dioxane (D), and 1,2-dimethoxyethane (DME) have been determined by measuring the emf's of the cell: Pt, H2 (g, 1 atm)|KOH (m1), KI (m2), solvent|AgI, Ag at seven equidistant temperatures ranging from 5 to 35 °C. In each of these ethereal solvent systems ΔGt0 values of HI, as well as of HCl and HBr obtained from the literature, and particularly of the individual ions, suggest that while H+ is increasingly stabilized, halide ions are increasingly destabilized due to the influence of cosolvent-induced larger "basicity" and smaller "acidity" of the mixed solvents compared to that of water, and both conformed to the expected order: D < THF < DME. Moreover, the relative order: Cl− > Br− > I− in all the solvent systems is ascribable to the combined effects of "acid–base" and "soft–soft" interactions and the superimposed quadrupolar interactions in the case of D and the charge transfer to solvent (CTTS) complexation effect, especially on I− in the case of THF. Analysis of the entropie contributions, TΔSt0, and particularly of the relative order of ΔY (≡TΔSt0(H+) + TΔSt,ch0(X−)) for X = Cl, Br, and I, in the light of the semi-quantitative theory proposed earlier by Kundu et al., reveals that at initial compositions, while THF promotes 3D structures of water, both D and DME break down the same; at higher compositions all the cosolvents disrupt the structure as usual due to packing imbalance. The nature and relative positions of ΔY–composition profiles also suggest that while increase of hydrophobic groups of the cosolvents increases the stabilization, increase in hydrophilicity or H-bonding sites decreases the stabilization of the 3D structure of water.





Previous studies on the effect of a change of medium on tire properties of dissolved electrolytes have aimed at correlating the behaviour of the electrolyte with the mean physical properties, e. g ., dielectric constants, of the medium. While this approach may be justified in the case of solvents containing molecules of only one kind, it is not sufficient to regard a mixed solvent as a uniform medium affecting the dissolved ions solely through the effect of its dielectric constant on the electric forces between them. For the electric fields of ions exert a differential attraction on molecules possessing different degrees of polarisability and since tire more polarisable molecules must tend to congregate round the ions, the properties of the latter cannot depend solely on tire mean properties of tire medium. Studies on the behaviour of ions in such cases will throw light on the interaction between ions and solvent molecules. The present paper gives tire results of measurements of the free energies and heat contents of hydrogen chloride in water-alcohol solutions, obtained by determining the electromotive forces of cells of the type:— H 2 ( g ) | HCl ( m ), AgCl ( s ) | Ag water-alcohol



1988 ◽  
Vol 66 (4) ◽  
pp. 637-644 ◽  
Author(s):  
Dian-Yuan Men ◽  
Jia-Zhen Yang ◽  
Chun-Yu Liang ◽  
Li-Tian Zhang ◽  
Huan Gao ◽  
...  

This paper reports electromotive force measurements of the cells[Formula: see text]and[Formula: see text]in mixed solvents of urea, mole fraction x = 0.05, at five temperatures from 278.15 to 318.15 K. The standard potentials of Ag–AgCl electrode in mixed solvents were obtained from the emf of cell (A) for HCl of molality mA from 0.02 to 0.11 mol kg−1, both by extrapolation on the basis of an extended Debye–Hückel equation and by a polynomial approach proposed in this paper on the basis of Pitzer's electrolytic solution theory. The standard free energies of transfer for HCl are discussed. The activity coefficients of HClγA in HCl + NaCl + urea + water have also been obtained from the emf of cell (B) at constant total ionic strength I = 0.5, 1.0, 1.5, and 2.0 mol kg−1. The experimental results show that HCl obeys Harned's rule and log γA is a linear function of absolute temperature T. They also indicate that the relative partial molar enthalpy of HCl obeys a similar Harned's rule.



Sign in / Sign up

Export Citation Format

Share Document