Aminoglycoside antibiotics: Synthesis of pseudotrisaccharides derived from neamine and paromamine

1978 ◽  
Vol 56 (11) ◽  
pp. 1500-1508 ◽  
Author(s):  
Stephen Hanessian ◽  
Tomoya Ogawa ◽  
Tetsuyoshi Takamoto

Pseudotrisaccharides of paromamine having a 6-O-(β-D-ribofuranosyl) and 6-O-(α-D-arabinofuranosyl) moieties were prepared from appropriately N,O-substituted derivatives of paromamine by glycosylation reactions. Selective functionalization at C-6′ in 6-O-(β-D-ribofuranosyl)paromamine led to the corresponding neamine-containing pseudotrisaccharide. None of these semisynthetic aminoglycosides possessed antibacterial activity, although at least one of them has been shown to be a substrate for the phosphotransferases I and II. The unnatural attachment of a pentofuranosyl moiety at C-6 of the 2-deoxystreptamine unit in these pseudotrisaccharides is, therefore, detrimental to their antibacterial action, unlike amino sugar containing analogs at the same position.

2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Negar Ghorbani ◽  
Abdol-Khalegh Bordbar ◽  
Asghar Taheri-Kafrani ◽  
Akbar Vaseghi

2019 ◽  
Vol 16 (6) ◽  
pp. 478-484
Author(s):  
Kenia Barrantes ◽  
Mary Fuentes ◽  
Luz Chacón ◽  
Rosario Achí ◽  
Jorge Granados-Zuñiga ◽  
...  

Two ether and one ester derivatives of the 4-nitro-3-hydroxybenzoic acid were synthesized and characterized. The in vitro antimicrobial and cytotoxic activities of the three novel compounds were also evaluated. The aromatic derivatives showed antibacterial activity against one of the four microorganisms tested and two compounds (C8 and NOBA) had a lower IC50 in HeLa cells.


2012 ◽  
Vol 9 (6) ◽  
pp. 633-637 ◽  
Author(s):  
Tomasz Plech ◽  
Monika Wujec ◽  
Urszula Kosikowska ◽  
Anna Malm ◽  
Magdalena Barylka ◽  
...  

2020 ◽  
Vol 16 (4) ◽  
pp. 481-488
Author(s):  
Heli Sanghvi ◽  
Satyendra Mishra

Background: Curcumin, one of the most important pharmacologically significant natural products, has gained significant consideration among scientists for decades since its multipharmacological activities. 1, 3-Dicarbonyl moiety of curcumin was found to be accountable for the rapid degradation of curcumin molecule. The aim of present work is to replace 1, 3-dicarbonyl moiety of curcumin by pyrazole and phenylpyrazole derivatives with a view to improving its stability and to investigate the role of substitution in N-phenylpyrazole curcumin on its antibacterial activity against both Gram-positive as well as Gram-negative bacteria. Methods: Pyrazole derivatives of curcumin were prepared by heating curcumin with phenyhydrazine/ substituted phenyhydrazine derivatives in AcOH. The residue was purified by silica gel column chromatography. Structures of purified compounds were confirmed by 1H NMR and Mass spectroscopy. The synthesized compounds were evaluated for their antibacterial activity by the microdilution broth susceptibility test method against gram positive (S. aureus) and gram negative (E. coli). Results: Effects of substitution in N-phenylpyrazole curcumin derivatives against S. aureus and E. coli were studied. The most active N-(3-Nitrophenylpyrazole) curcumin (12) exhibits twenty-fold more potency against S. aureus (MIC: 10μg/mL)) and N-(2-Fluoroophenylpyrazole) curcumin (5) fivefold more potency against E. coli (MIC; 50 μg/mL) than N-phenylpyrazole curcumin (4). Whereas, a remarkable decline in anti-bacterial activity against S. aureus and E. coli was observed when electron donating groups were incorporated in N-phenylpyrazole curcumin (4). Comparative studies of synthesized compounds suggest the effects of electron withdrawing and electron donating groups on unsubstituted phenylpyrazole curcumin (4). Conclusion: The structure-activity relationship (SAR) results indicated that the electron withdrawing and electron donating at N-phenylpyrazole curcumin played key roles for their bacterial inhibitory effects. The results of the antibacterial evaluation showed that the synthesized pyrazole derivatives of curcumin displayed moderate to very high activity in S. aureus. In conclusion, the series of novel curcumin derivatives were designed, synthesized and tested for their antibacterial activities against S. aureus and E. coli. Among them, N-(3-Nitrophenylpyrazole curcumin; 12) was most active against S. aureus (Gram-positive) and N-(2-Fluoroophenylpyrazole) curcumin (5) against E. coli (Gram-negative) bacteria.


2021 ◽  
Vol 27 (S1) ◽  
pp. 554-556
Author(s):  
Maria Sokolova ◽  
Anastasia Ignatova ◽  
Petr Ostroverkhov ◽  
Andrey Mironov ◽  
Mikhail Grin ◽  
...  

2021 ◽  
Vol 31 (4) ◽  
pp. 498-500
Author(s):  
Jian Sun ◽  
Lili He ◽  
Yuanyu Gao ◽  
Lijuan Zhai ◽  
Jingwen Ji ◽  
...  

1998 ◽  
Vol 8 (11) ◽  
pp. 1321-1326 ◽  
Author(s):  
Sherman T. Waddell ◽  
Gina M. Santorelli ◽  
Timothy A. Blizzard ◽  
Amy Graham ◽  
James Occi

Antibiotics ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 98 ◽  
Author(s):  
Eunice Mgbeahuruike ◽  
Pia Fyhrquist ◽  
Heikki Vuorela ◽  
Riitta Julkunen-Tiitto ◽  
Yvonne Holm

Piper guineense is a food and medicinal plant commonly used to treat infectious diseases in West-African traditional medicine. In a bid to identify new antibacterial compounds due to bacterial resistance to antibiotics, twelve extracts of P. guineense fruits and leaves, obtained by sequential extraction, as well as the piperine and piperlongumine commercial compounds were evaluated for antibacterial activity against human pathogenic bacteria. HPLC-DAD and UHPLC/Q-TOF MS analysis were conducted to characterize and identify the compounds present in the extracts with promising antibacterial activity. The extracts, with the exception of the hot water decoctions and macerations, contained piperamide alkaloids as their main constituents. Piperine, dihydropiperine, piperylin, dihydropiperylin or piperlonguminine, dihydropiperlonguminine, wisanine, dihydrowisanine and derivatives of piperine and piperidine were identified in a hexane extract of the leaf. In addition, some new piperamide alkaloids were identified, such as a piperine and a piperidine alkaloid derivative and two unknown piperamide alkaloids. To the best of our knowledge, there are no piperamides reported in the literature with similar UVλ absorption maxima and masses. A piperamide alkaloid-rich hexane leaf extract recorded the lowest MIC of 19 µg/mL against Sarcina sp. and gave promising growth inhibitory effects against S. aureus and E. aerogenes as well, inhibiting the growth of both bacteria with a MIC of 78 µg/mL. Moreover, this is the first report of the antibacterial activity of P. guineense extracts against Sarcina sp. and E. aerogenes. Marked growth inhibition was also obtained for chloroform extracts of the leaves and fruits against P. aeruginosa with a MIC value of 78 µg/mL. Piperine and piperlongumine were active against E. aerogenes, S. aureus, E. coli, S. enterica, P. mirabilis and B. cereus with MIC values ranging from 39–1250 µg/mL. Notably, the water extracts, which were almost devoid of piperamide alkaloids, were not active against the bacterial strains. Our results demonstrate that P. guineense contains antibacterial alkaloids that could be relevant for the discovery of new natural antibiotics.


Sign in / Sign up

Export Citation Format

Share Document