Solvent effects on the structure of SN2 transition states

1978 ◽  
Vol 56 (20) ◽  
pp. 2691-2699 ◽  
Author(s):  
Kenneth Charles Westaway

Two research groups have used heavy atom leaving group kinetic isotope effects to determine how the structure of an SN2 transition state is affected by a change in solvent. Two completely different types of behaviour were observed in these studies. In one case, the leaving group kinetic isotope effect, and thus the transition state structure, changed markedly when the solvent was varied over a reasonably narrow range. In the other study, the leaving group kinetic isotope effect (transition state structure) remained constant over a wide range of solvents. A model describing the interaction between solvent molecules and SN2 transition states is developed and a SolvationruleforSN2reactions which rationalizes the different experimental results is explained and justified. Finally, predictions based on the solvation rule are shown to be in agreement with the results of theoretical calculations of solvent effects on SN2 transition states and secondary α deuterium kinetic isotope effect measurements.

1988 ◽  
Vol 66 (5) ◽  
pp. 1263-1271 ◽  
Author(s):  
Kenneth Charles Westaway ◽  
Zhu-Gen Lai

Spectroscopic and conductivity studies of sodium thiophenoxide solutions in four different solvents and the secondary α-deuterium kinetic isotope effects found in the presence of 15-crown-5 ether demonstrate that the secondary α-deuterium kinetic isotope effect and transition state structure for the SN2 reaction between sodium thiophenoxide and n-butyl chloride are significantly different, depending on whether the ionic reactant is a solvent-separated ion-pair complex or a free ion. In all three solvents in which the form of the ionic reactant changes, a smaller isotope effect and tighter transition state are found for the reaction with the ion-pair complex.


1998 ◽  
Vol 76 (6) ◽  
pp. 758-764 ◽  
Author(s):  
Yao-ren Fang ◽  
Zhu-gen Lai ◽  
Kenneth Charles Westaway

The effect of ion-pairing in an SN2 reaction is very different when the nucleophilic atom is changed from sulfur to oxygen, i.e., changing the nucleophile from thiophenoxide ion to phenoxide ion. When the nucleophile is sodium thiophenoxide, ion-pairing markedly alters the secondary α -deuterium kinetic isotope effect (transition state structure) and the substituent effect found by changing the para substituent on the nucleophile. When the nucleophile is sodium phenoxide, ion-pairing does not significantly affect the secondary α -deuterium or the chlorine leaving group kinetic isotope effects (transition state structure) or the substituent effects found by changing a para substituent on the nucleophile or the substrate. The different effects of ion-pairing may occur because the electron density on the hard oxygen atom of the sodium phenoxide is not affected significantly by ion-pairing.Key words: nucleophilic substitution, SN2, kinetic isotope effect, transition state, substituent effects, ion-pair.


1989 ◽  
Vol 67 (2) ◽  
pp. 345-349 ◽  
Author(s):  
Kenneth Charles West Away ◽  
Zhu-Gen Lai

Identical secondary α-deuterium kinetic isotope effects (transition state structures) in the SN2 reaction between n-butyl chloride and a free thiophenoxide ion in aprotic and protic solvents confirm the validity of the Solvation Rule for SN2 Reactions. These isotope effects also suggest that hydrogen bonding from the solvent to the developing chloride ion in the SN2 transition state does not have a marked effect on the magnitude of the chlorine (leaving group) kinetic isotope effects. Unlike the free ion reactions, the secondary α-deuterium kinetic isotope effect (transition state structure) for the SN2 reaction between n-butyl chloride and the solvent-separated sodium thiophenoxide ion pair complex is strongly solvent dependent. These completely different responses to a change in solvent are rationalized by an extension to the Solvation Rule for SN2 Reactions. Finally, the loosest transition state in the reactions with the solvent-separated ion pair complex is found in the solvent with the smallest dielectric constant. Keywords: ion pairs, transition state, solvent effects, nucleophilic substitution, isotope effects.


Sign in / Sign up

Export Citation Format

Share Document