Vacuum-ultraviolet (147.0 nm and 123.6 nm) photolysis of 1,1-dimethylcyclopropane

1981 ◽  
Vol 59 (3) ◽  
pp. 537-542
Author(s):  
Joseph B. Binkewicz ◽  
Michael Kaplan ◽  
Richard D. Doepker

The gas-phase photolysis of 1,1-dimethylcyclopropane has been investigated using xenon (147.0 nm) and krypton (123.6 nm) resonance radiation. Major products observed in order of decreasing importance were isobutene, ethylene, hydrogen, 1,3-butadiene 2-methyl-1,3-butadiene, propylene, allene, methylacetylene, and acetylene. Radical scavengers, NO and O2, and radical interceptors, H2S/D2S and HI, were used to determine the relative importance of radical and molecular processes. CH3, C2H3, C3H5, and C4H7 radical species were identified and quantified. Ten primary reaction channels were postulated, of which the elimination of methylene was the most predominant, accounting for 34% of the photo-decomposition at 147.0 nm and 39% at 123.6 nm. Although ionization was established at 123.6 nm (η = 0.10) the nature of a charge transfer or other ion-molecule reaction channel leading to the formation of 2-methyl-1-butene and 2-methyl-2-butene could not be determined.

1984 ◽  
Vol 62 (9) ◽  
pp. 1731-1735
Author(s):  
Valerie I. Lang ◽  
Richard D. Doepker

The gas-phase photolysis of 2-methyl-1,3-butadiene has been investigated using krypton (123.6 nm) resonance radiation. The observed neutral products of the primary decomposition were vinylacetylene, ethylene, acetylene, methylacetylene, propylene, allene, 2-methy-1-buten-3-yne, pentatriene/1-penten-3-yne, 1,3-butadiene, 2-butyne and butatriene, listed in decreasing order of concentration. There was also evidence of the presence of several radical fragments: CH2/CH3, C2H3, C3H3, and C4H5. Quantum yields for each of the products were determined in the photolysis of 2-methyl-1,3-butadiene, performed both in the presence and the absence of additives. Nitric oxide and oxygen were employed as radical scavengers, while hydrogen sulfide and hydrogen iodide were used as radical interceptors. Twelve primary, neutral molecule, reaction channels were proposed and the quantum efficiency assigned for each. The ionization efficiency of 2-methyl-1,3-butadiene was established as n = 0.55 at 10.03 eV. No products formed exclusively via an ion–molecule pathway were identified and therefore the fate of the C5H8+ ion was not determined.


1985 ◽  
Vol 63 (12) ◽  
pp. 3593-3596 ◽  
Author(s):  
M. Paller ◽  
R. D. Doepker

The gas-phase photolysis of spiropentane has been investigated using xenon (147.0 nm) resonance radiation. Major products observed in order of decreasing importance are ethylene, aliène, methylacetylene, 1,2-butadiene, acetylene, propylene, and vinylacetylene. Nitric oxide was used as a radical scavenger while hydrogen sulfide and hydrogen iodide were employed as radical interceptors in the determination of the relative importance of radical and molecular processes. CH3/CH2 and CH3C=C• radicals were identified and quantified. Seven primary reaction channels were postulated of which those involving the "elimination" of ethylene were the most predominant accounting for 71% of the photodecomposition.


2021 ◽  
Vol 23 (11) ◽  
pp. 6462-6471
Author(s):  
Piyush Mishra ◽  
Sean M. Fritz ◽  
Sven Herbers ◽  
Alexander M. Mebel ◽  
Timothy S. Zwier

The flash pyrolysis of trans 3-pentenenitrile was studied by mass-correlated broadband microwave spectroscopy, where both molecular and radical species were observed within our jet-cooled molecular beam, including 2,4-pentadienenitrile.


2000 ◽  
Vol 96 ◽  
pp. 445-475 ◽  
Author(s):  
Wan Yong Feng ◽  
Scott Gronert
Keyword(s):  

ChemInform ◽  
2010 ◽  
Vol 31 (17) ◽  
pp. no-no
Author(s):  
Wan Yong Feng ◽  
Scott Gronert
Keyword(s):  

1992 ◽  
Vol 189 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Kenzo Hiraoka ◽  
Toshiharu Mori ◽  
Shinichi Yamabe
Keyword(s):  

From a study of the u. v., visible, near i. r. and e. s. r. spectra induced by γ -irradiation at 77°K in glassy MTHF and in glassy MTHF containing various additives and from a study of controlled temperature increases on these spectra, the following conclusions are drawn. (1) The primary products of the radiolysis are electrons ( e - ) and positive ions ( MTHF + ) which undergo a rapid ion-molecule reaction to give O CH 3 radicals ( R ⋅). (2) e - can either be trapped in the glassy MTHF matrix or can be captured by either napththalene, ferric chloride, carbon tetrachloride, nitrous oxide or trans -stilbene if these substances are present. (3) The e - T are bleachable by light or heat and disappear independently of the radicals R⋅ without either augmentation of R⋅ or the production of any new radical species. (4) e - T and R⋅ disappear thermally and independently by second-order reactions, the rate constants being K e - + e - (M -1 S -1 ) = 10 12⋅4±1⋅1 exp ─ [0⋅85 ± 0⋅10 kcal/mole/ R ( T ─ 75)] and K R˙ + R˙ (M -1 S -1 ) = 10 13⋅3±1⋅4 exp ─ [1⋅20 ± 0⋅15 kcal/mole/ R ( T ─ 75)]. These rate expressions suggest that both reactions are diffusion controlled at low temperatures in the glassy phase. (5) The kinetics of the thermal bleaching of e - T indicate that the electrons migrate distances of about 150 Å from their parent positive ions before being trapped in the matrix. (6) The effect of FeCl 3 in reducing the formation of e - T at 77°K and its lack of effect on the thermal bleaching of e - T suggests that the reaction e - + FeCl 3 → FeCl 2 + Cl - only occurs before the electron is thermalized.


2017 ◽  
Vol 147 (19) ◽  
pp. 194302 ◽  
Author(s):  
Marta Berholts ◽  
Hanna Myllynen ◽  
Kuno Kooser ◽  
Eero Itälä ◽  
Sari Granroth ◽  
...  

1997 ◽  
Vol 35 (4) ◽  
pp. 41-48 ◽  
Author(s):  
T.M. Hashem ◽  
M. Zirlewagen ◽  
A. M. Braun

A more efficient use of vacuum ultraviolet (VUV) radiation produced by an immersed Xe-excimer light source (172 nm) was investigated for the oxidative degradation of organic pollutants in aqueous systems. All emitted VUV radiation from one light source was used in two simultaneous but separate photochemical reactions: (1) photochemical generation of ozone by irradiating oxygen in the gas phase and (2) photolysis of the aqueous reaction system. The gas stream containing the generated ozone is sparged into the reaction system, thus enhancing the oxidative degradation of organic pollutants. The photochemically generated ozone in the gas phase was quantitatively analyzed, and the kinetics of the degradation of 4-chlorophenol (4-CP) and of the dissolved organic carbon (DOC) were determined under different experimental conditions. The results show that the rates of degradation of the substrate and of the DOC decrease in the order of the applied processes, VUV/O3 > O3 > VUV.


2015 ◽  
Vol 112 (49) ◽  
pp. 15030-15035 ◽  
Author(s):  
Fabio Pietrucci ◽  
Antonino Marco Saitta

Increasing experimental and theoretical evidence points to formamide as a possible hub in the complex network of prebiotic chemical reactions leading from simple precursors like H2, H2O, N2, NH3, CO, and CO2 to key biological molecules like proteins, nucleic acids, and sugars. We present an in-depth computational study of the formation and decomposition reaction channels of formamide by means of ab initio molecular dynamics. To this aim we introduce a new theoretical method combining the metadynamics sampling scheme with a general purpose topological formulation of collective variables able to track a wide range of different reaction mechanisms. Our approach is flexible enough to discover multiple pathways and intermediates starting from minimal insight on the systems, and it allows passing in a seamless way from reactions in gas phase to reactions in liquid phase, with the solvent active role fully taken into account. We obtain crucial new insight into the interplay of the different formamide reaction channels and into environment effects on pathways and barriers. In particular, our results indicate a similar stability of formamide and hydrogen cyanide in solution as well as their relatively facile interconversion, thus reconciling experiments and theory and, possibly, two different and competing prebiotic scenarios. Moreover, although not explicitly sought, formic acid/ammonium formate is produced as an important formamide decomposition byproduct in solution.


Sign in / Sign up

Export Citation Format

Share Document