Polarography of n-butylthioglycolate in aqueous media, methanol, and acetonitrile

1984 ◽  
Vol 62 (9) ◽  
pp. 1817-1821
Author(s):  
K. C. Gupta ◽  
Kalpana K. Sharma

The polarographic behaviour of n-butylthioglycolate (RSH) at the DME in aqueous media, methanol, and acetonitrile has been investigated in the presence of 0.1 M KNO3 and 0.01% thymol. The effect of pH, concentration of RSH, and drop time on the wave characteristics and the mechanism of the reaction occurring at the surface of the mercury drop have been studied. Well-defined reversible and diffusion-controlled anodic waves were obtained in aqueous media (pH 4.2), 40% methanol (pH 3.22), and 40% acetonitrile (pH 2.96). Mathematical and analytical evidence was obtained to show that the anodic wave of RSH at a dropping mercury electrode in aqueous media, 40% methanol, and 40% acetonitrile is due to the formation of the mercury complex RSHg. The dissociation constant (pK) of the mercapto group in n-butylthioglycolate is 9.6 and the diffusion coefficient in the different media are 1.17 × 10−6 cm2 s−1 (in aqueous media) 1.23 × 10−6 cm2 s−1 (in 40% methanol), and 2.43 × 10−6 cm2 s−1 (in 40% acetonitrile). The linearity of id with RSH concentration provides a rapid and precise method for the determination of RSH, down to 0.4 mM in aqueous media, methanol, and acetonitrile.

1969 ◽  
Vol 24 (12) ◽  
pp. 1520-1523 ◽  
Author(s):  
R. S. Saxena ◽  
Pratap Singh

The polarographic behaviour of 3-mercapto-1, 2-propanediol (TSH) at the d.m.e. has been investigated in presence of 0.1 M NaClO4 and 0.001% Triton X-100 with respect to the effects of changes in pH. concentration of TSH, drop time and temperature on the wave characteristics. A single well defined irreversible anodic wave was obtained over the entire pH range (1.84 — 12.3) which was found to shift towards the more negative potential with the increase in pH. The E½ values obtained at different pH were used to evaluate the dissociation constant of sulphydryl group; the pK value has been found to be 9.25.The linearity of id with TSH concentration provides a rapid and precise method for the determination of TSH to 0.1 mmole. The values of Kinetic parameters-formal rate constant (K°b,h) and transfer coefficient (a) have been evaluated by applying Koutecky’s theoretical treatment as extended by Meites and Israel and were found to be 1.738 × 10-4 cm/sec and 0.277 respectively.


1987 ◽  
Vol 52 (11) ◽  
pp. 2810-2818 ◽  
Author(s):  
Emil Paleček ◽  
František Jelen ◽  
Vladimír Vetterl

The behaviour of electrochemically reducible single-strand polynucleotides (poly(adenylic acid)) and poly(cytidylic acid)) was studied by the differential (derivative) pulse polarography (DPP) and by other methods. Measurements were performed with the help of the dropping mercury electrode under various conditions specified by the pulse width, pulse amplitude, drop time etc. For the faradaic and tensammetric DPP peaks the diagnostic criteria were proposed which make it possible to classify even very small DPP peaks of double helical polynucleotides.


1983 ◽  
Vol 48 (10) ◽  
pp. 2903-2908 ◽  
Author(s):  
Viktor Vrabec ◽  
Oldřich Vrána ◽  
Vladimír Kleinwächter

A method is described for determining total platinum content in urine, blood plasma and tissues of patients or experimental animals receiving cis-dichlorodiamineplatinum(II). The method is based on drying and combustion of the biological material in a muffle furnace. The product of the combustion is dissolved successively in aqua regia, hydrochloric acid and ethylenediamine. The resulting platinum-ethylenediamine complex yields a catalytic current at a dropping mercury electrode allowing to determine platinum by differential pulse polarography. Platinum levels of c. 50-1 000 ng per ml of the biological fluid or per 0.5 g of a tissue can readily be analyzed with a linear calibration.


1991 ◽  
Vol 56 (7) ◽  
pp. 1434-1445 ◽  
Author(s):  
Jiří Barek ◽  
Ivana Švagrová ◽  
Jiří Zima

Polarographic reduction of the genotoxic N,N’-dinitrosopiperazine was studied and its mechanism was suggested. Optimum conditions were established for the determination of this substance by tast polarography over the concentration region of 1 . 10-3 to 1 . 10-6 mol l-1 and by differential pulse polarography on the conventional dropping mercury electrode or by fast scan differential pulse voltammetry and linear sweep voltammetry on a hanging mercury drop electrode over the concentration region of 1 . 10-3 to 1 . 10-7 mol l-1. Attempts at increasing further the sensitivity via adsorptive accumulation of the analyte on the surface of the hanging mercury drop failed. The methods are applicable to the testing of the chemical efficiency of destruction of the title chemical carcinogen based on its oxidation with potassium permanganate in acid solution.


1996 ◽  
Vol 61 (3) ◽  
pp. 333-341
Author(s):  
Jiří Barek ◽  
Roman Hrnčíř ◽  
Josino C. Moreira ◽  
Jiří Zima

The polarographic behaviour was studied for 6-β-D-glucopyranosyloxy-7-hydroxycoumarin, a natural compound serving as an optical whitening agent. The substance can be quantitated by tast polarography, differential pulse polarography using a conventional dropping mercury electrode, and differential pulse polarography using a static mercury drop electrode over the regions of 20-1 000, 2-1 000, and 0.2-1 000 μmol l-1, respectively. The methods developed for the quantitation of the compound were applied to its direct determination in a raw product.


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1571-1587 ◽  
Author(s):  
Karel Čížek ◽  
Jiří Barek ◽  
Jiří Zima

The polarographic behavior of 3-nitrofluoranthene was investigated by DC tast polarography (DCTP) and differential pulse polarography (DPP), both at a dropping mercury electrode, differential pulse voltammetry (DPV) and adsorptive stripping voltammetry (AdSV), both at a hanging mercury drop electrode. Optimum conditions have been found for its determination by the given methods in the concentration ranges of 1 × 10-6-1 × 10-4 mol l-1 (DCTP), 1 × 10-7-1 × 10-4 mol l-1 (DPP), 1 × 10-8-1 × 10-6 mol l-1 (DPV) and 1 × 10-9-1 × 10-7 mol l-1 (AdSV), respectively. Practical applicability of these techniques was demonstrated on the determination of 3-nitrofluoranthene in drinking and river water after its preliminary separation and preconcentration using liquid-liquid and solid phase extraction with the limits of determination 4 × 10-10 mol l-1 (drinking water) and 2 × 10-9 mol l-1 (river water).


Sign in / Sign up

Export Citation Format

Share Document