An example of conformational disorder in solids: X-ray crystallographic and 13C CPMAS NMR studies of dibenzo and dicyclohexano-13-crown-4 ethers and some lithium complexes

1990 ◽  
Vol 68 (1) ◽  
pp. 49-58 ◽  
Author(s):  
G. W. Buchanan ◽  
R. A. Kirby ◽  
J. P. Charland

For the cis–anti–cis isomer of dicyclohexano-13-crown-4 ether, disorder has been detected in the crystal structure, with two conformations being present in the ratio of ca. 3:2. Crystal structures for two Li+ complexes of the cis–syn–cis isomer have also been determined. Representative 13C solid phase NMR spectra are presented and discussed for these systems and the related dibenzo substituted compounds. Keywords: crown ethers, solids, NMR, conformation.

1995 ◽  
Vol 73 (1) ◽  
pp. 100-105 ◽  
Author(s):  
G.W. Buchanan ◽  
A. Moghimi ◽  
C. Bensimon

The X-ray crystal structure of the title material indicates that the molecule possesses a pseudo-centre of inversion. A pair of O-C-C-O bonds have a trans conformation in contrast to normal gauche stereochemistry for such units in crown ethers. For the C-O-C-C networks, which are normally transoid in crown ethers, all four such units involving methylene carbons of the 20-membered ring exhibit unusual geometries. Two units possess gauche conformations and the other two have torsion angles near 120°. Solution 1H and 13C NMR spectra have been recorded as a function of temperature and 13C solid state spectra are included. Keywords: crown ether, solid state conformation.


2000 ◽  
Vol 78 (3) ◽  
pp. 316-321
Author(s):  
G W Buchanan ◽  
A B Driega ◽  
G PA Yap

The title complex is asymmetric in the crystal due to the spatial orientation of the NCS function. The space group has been determined to be P21 with a = 9.496(3), b = 8.736(3), c = 9.676(3) Å, β = 117.859(5)°, and Z = 2. The solid state 13C NMR spectrum is consistent with the lack of symmetry in the crystal and there is little evidence for large amplitude motion in the macrocycle as determined from the dipolar dephased spectrum.Key words: macrocyclic crown ether, lithium complex.


1982 ◽  
Vol 60 (11) ◽  
pp. 1304-1316 ◽  
Author(s):  
Louis J. Farrugia ◽  
Brian R. James ◽  
Claude R. Lassigne ◽  
Edward J. Wells

The octahedral anions [M(SnCl3)5Cl]4− (M = Ru, Os) have been fully characterized by 119Sn FT nmr spectroscopy. For M = Ru, 117Sn and 115Sn nmr spectra were also recorded, and an X-ray crystallographic study was carried out on the tetraethylammonium salt, isolated as a disolvate from acetonitrile. The Ru—Sn bond lengths indicate some degree of dπ–dπ interactions. The slight distortions from octahedral geometry are discussed in connection with the packing of the chlorine atoms. The Sn nmr spectra reveal the first observed coupling to a 99Ru nucleus (I = 5/2, 12.7% natural abundance), very large 2J(119Sn—117Sn) coupling constants, and the first observed second-order effects on a heteronuclear system. The octahedral anion [Ru(SnCl3)5(MeCN)]3− was also synthesized as the tetraethylammonium salt and characterized spectroscopically.


1991 ◽  
Vol 69 (1) ◽  
pp. 12-19 ◽  
Author(s):  
Frank R. Fronczek ◽  
Richard D. Gandour ◽  
Thomas M. Fyles ◽  
Philippa J. Hocking ◽  
Susan J. McDermid ◽  
...  

The synthesis of crown ethers derived from meso-tartaric acid was investigated. The sodium salt of the bis(dimethylamide) of meso-tartaric acid reacted with diethylene glycol ditosylate to give a mixture of 18-crown-6 tetraamide and 27-crown-9 hexaamide crown ethers. The 2R,3S,11S,12R 18-crown-6 isomer crystallized in triclinic space group [Formula: see text] (a = 7.557(2), b = 8.866(2), c = 10.4133(13) Å, α = 94.13(2), β = 95.86(2), γ = 99.26(2)°, R = 0.040 for 2090 observed of 3129 unique reflections). The structures of the remaining products were then assigned from the NMR spectra. The solution conformations of the amide crown ethers were examined by NMR, and provide a rationale for the product distribution obtained. One of the 18-crown-6 isomers and a mixture of the two 27-crown-9 isomers were hydrolyzed to the respective crown ether carboxylic acids, and the stability constants for complexation of cations were determined by potentiometric titration. The meso tetra- and hexacarboxylates are remarkably nonselective and inefficient cation complexing agents, compared to related crown ethers from R,R-(+)-tartaric acid, due to the unfavorable conformational control exerted by the tartaro units. Key words: crown ether synthesis, complexation, crown ether conformation, meso-tartaric acid, crystal structure.


2007 ◽  
Vol 26-28 ◽  
pp. 243-246
Author(s):  
Xing Hua Yang ◽  
Jin Liang Huang ◽  
Xiao Wang ◽  
Chun Wei Cui

BaBi4-xLaxTi4O15 (BBLT) ceramics were prepared by conventional solid phase sintering ceramics processing technology. The crystal structure and the microstructure were detected by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD analyses show that La3+ ions doping did not change the crystal structure of BBT ceramics. The sintering temperature increased from 1120°C to 1150°C with increasing Lanthanum content from 0 to 0.5, but it widened the sintering temperature range from 20°C to 50°C and refined the grain size of the BBT ceramic. Additionally, polarization treatment was performed and finally piezoelectric property was measured. As a result, the piezoelectric constant d33 of the 0.1at.% doped BBLT ceramics reached its highest value about 22pc/N at polarizing electric field of 8kV/mm and polarizing temperature of 120°C for 30min.


2013 ◽  
Vol 750-752 ◽  
pp. 506-511
Author(s):  
Yuan Yuan Li ◽  
Gui Xia Dong ◽  
Bi Yan Zhu ◽  
Qiu Xiang Liu ◽  
Di Wu

As a research object, the samples with various Ba/Ti ratios (Ba/Ti=0.95~1.05) were synthesized by solid phase reaction method. Effect of sintering temperatures and Ba/Ti ratio on dielectric properties and crystal structure of BaTiO3ceramic were investigated. Crystal structure and crystal phase composition were investigated by scanning electron microscopy and X-ray diffraction. The dielectric properties were studied by Agilent 4294A at 1 kHz. The results show that the BaTiO3ceramic has high permittivity and dielectric loss at 1340°C. The permittivity of BaTiO3ceramic with Ba/Ti=0.95 change small as the sintering temperatures vary at 1320°C. With the increasing of Ba/Ti ratio, the Curie temperature first increases and then decreases as the sample sintering at 1320°C. When Ba/Ti=1, the Curie temperature increase with the sintering temperature increasing.


Sign in / Sign up

Export Citation Format

Share Document