The direct electrochemical synthesis of some metal derivatives of 3-hydroxy-2-methyl-4-pyrone

1990 ◽  
Vol 68 (9) ◽  
pp. 1598-1605 ◽  
Author(s):  
Theodore A. Annan ◽  
Clovis Peppe ◽  
Dennis G. Tuck

The electrochemical oxidation of a metallic sacrificial anode (M = Zn, Cd, Sn, In, Cu) in a non-aqueous solution of 3-hydroxy-2-methyl-4-pyrone (= HL) yields the MLn complexes (M = Zn, Cd, Sn, Cu, n = 2; M = In, n = 3). Adducts of the type ML2•B (M = Zn, Cd, B = N,N,N′,N′-tetramethylethylenediamine (tmen); M = Cu, B = triphenylphosphine) were obtained by the reaction between the appropriate ligand (B) and the previously synthesized complexes (M = Zn, Cd), or by arranging for the initial electrolytic phase to include the base (M = Cu). The tin(II) compound shows the typical reactions of such low oxidation state species by reacting with iodine and ortho-quinones by oxidative addition. All compounds were characterized by elemental analysis and by IR, 1H and 13C nmr spectroscopy. The structure of CdL2•tmen was determined by X-ray crystallography, which identified the CdO4N2 kernel, and partial electron delocalization within the pyronate ring. Keywords: electrochemical synthesis, cadmium complexes, zinc complexes, tin(II) oxidation, 3-hydroxy-2-methyl-4-pyrone.

1997 ◽  
Vol 75 (5) ◽  
pp. 499-506 ◽  
Author(s):  
E.H. De Oliveira ◽  
G.E.A. Medeiros ◽  
C. Peppe ◽  
Martyn A. Brown ◽  
Dennis G. Tuck

The electrochemical oxidation of a sacrificial metal anode (M = Zn, Cd, Cu) in an acetonitrile solution of 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone, lapachol, C15H14O3 (=HL) gives ML2. The results are in keeping with earlier work on direct electrochemical synthesis in related systems. Adducts with 2,2′-bipyridine (bpy) and N,N,N′,N′-tetramethylethanediamine (tmen) have also been prepared. The structure of the 2,2′-bipyridine adduct of Cu(lapacholate)2 has been established by X-ray crystallography. The parameters are triclinic, space group [Formula: see text], a = 12.748(59) Å, b = 13.859(49) Å, c = 11.770(59) Å, α = 108.30(4)°, β = 108.08(3)°, γ = 68.94(3)°, Z = 2, R = 0.059 for 2256 unique reflections. The copper atom is in a distorted CuN2O2O2′ environment. The mechanism of the formation of this Cu(lapacholate)2 is discussed. Keywords: electrochemical synthesis, lapachol, X-ray crystallography, copper(II) complex.


2015 ◽  
Vol 112 (16) ◽  
pp. 4935-4940 ◽  
Author(s):  
Na Song ◽  
Javier J. Concepcion ◽  
Robert A. Binstead ◽  
Jennifer A. Rudd ◽  
Aaron K. Vannucci ◽  
...  

In aqueous solution above pH 2.4 with 4% (vol/vol) CH3CN, the complex [RuII(bda)(isoq)2] (bda is 2,2′-bipyridine-6,6′-dicarboxylate; isoq is isoquinoline) exists as the open-arm chelate, [RuII(CO2-bpy-CO2−)(isoq)2(NCCH3)], as shown by 1H and 13C-NMR, X-ray crystallography, and pH titrations. Rates of water oxidation with the open-arm chelate are remarkably enhanced by added proton acceptor bases, as measured by cyclic voltammetry (CV). In 1.0 M PO43–, the calculated half-time for water oxidation is ∼7 μs. The key to the rate accelerations with added bases is direct involvement of the buffer base in either atom–proton transfer (APT) or concerted electron–proton transfer (EPT) pathways.


2006 ◽  
Vol 84 (10) ◽  
pp. 1294-1300 ◽  
Author(s):  
Keith Vaughan ◽  
Shasta Lee Moser ◽  
Reid Tingley ◽  
M Brad Peori ◽  
Valerio Bertolasi

Reaction of a series of diazonium salts with a mixture of formaldehyde and 1,2-diamino-2-methylpropane affords the 3-({5,5-dimethyl-3-[2-aryl-1-diazenyl]-1-imidazolidinyl}methyl)-4,4-dimethyl-1-[2-aryl-1-diazenyl]imidazolidines (1a–1f) in excellent yield. The products have been characterized by IR and NMR spectroscopic analysis, elemental analysis, and X-ray crystallography. The X-ray crystal structure of the p-methoxycarbonyl derivative (1c) establishes without question the connectivity of these novel molecules, which can be described as linear bicyclic oligomers with two imidazolidinyl groups linked together by a one-carbon spacer. This is indeed a rare molecular building block. The molecular structure is corroborated by 1H and 13C NMR data, which correlates with the previously published data of compounds of types 5 and 6 derived from 1,3-propanediamine. The triazene moieties in the crystal of 1c display significant π conjugation, which gives the N—N bond a significant degree of double-bond character. This in turn causes restricted rotation around the N—N bond, which leads to considerable broadening of signals in both the 1H and 13C NMR spectra. The molecular ion of the p-cyanophenyl derivative (1b) was observed using electrospray mass spectrometry (ES + Na). The mechanism of formation of molecules of type 1 is proposed to involve diazonium ion trapping of the previously unreported bisimidazolidinyl methane (13).Key words: triazene, bistriazene, imidazolidine, synthesis, X-ray crystallography, NMR spectroscopy.


2020 ◽  
Author(s):  
Rajesh Kumar ◽  
Kapil Dev Sayala ◽  
Lejla Lejla Camdzic ◽  
Maxime Siegler ◽  
Avichal Vaish ◽  
...  

A series of heterocyclic hypervalent (HV) iodine(III) compounds containing fused tetrazole and benziodazole rings, i.e., derivatives of benziodazolotetrazole (BIAT) with various ligands (L) attached to the iodine atom (BIAT-L) were prepared and studied. They were characterized by <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy, ESI-HRMS, and X-ray crystallography. The thermal stabilities of all BIAT derivatives (L= Cl, OH, OAc, OMe) were studied and the degradation patterns as well as the enthalpies of degradation were measured by thermal gravimetric analysis coupled with differential scanning calorimetry. The reaction of various alkenes with BIAT-Cl in the presence of Cu(OTf)<sub>2</sub> at room temperature yielded chloro-tetrazolylated products. The oxidation of thioanisole with BIAT-Cl under various reaction conditions is also reported.


2013 ◽  
Vol 8 (6) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Jiwen Zhang ◽  
Zhan Hu ◽  
Shengkun Li ◽  
Shuding Yang ◽  
Wenjun Wu

In order to develop novel biorational pesticides, twelve new ether derivatives of 1β,4α,6α,9α-tetrahydroxy-2β,12-epoxymethano-β-dihydroagarofuran (3) were synthesized. The structure of the important intermediate 3 was confirmed by X-ray crystallography, and the new derivatives (3.1–3.12) were elucidated by IR, 1H NMR, 13 C NMR and 2D NMR spectroscopic and ESI-MS analysis. Insecticidal activities of these derivatives were tested against the third-instar larvae of Mythimna separata. Though most of the derivatives (3.1–3.4, 3.6, 3.8, 3.9–3.12) revealed no obvious activities at the concentration of 10 mg/mL –1, two compounds 3.5 and 3.7, with KD50 values of 12.9 (μg/g-1 and 7.8 μg/g –1, respectively, showed much higher insecticidal activities than celangulin-V, with a KD50 of 321.4 μg·g–1, the main insecticidal component from the root bark of Chinese bittersweet, Celastrus angulatus Max. The results showed that β-dihydroagarofuran has the potential to be a lead structure for semi-synthetic green insecticides.


2020 ◽  
Author(s):  
Rajesh Kumar ◽  
Kapil Dev Sayala ◽  
Lejla Lejla Camdzic ◽  
Maxime Siegler ◽  
Avichal Vaish ◽  
...  

A series of heterocyclic hypervalent (HV) iodine(III) compounds containing fused tetrazole and benziodazole rings, i.e., derivatives of benziodazolotetrazole (BIAT) with various ligands (L) attached to the iodine atom (BIAT-L) were prepared and studied. They were characterized by <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy, ESI-HRMS, and X-ray crystallography. The thermal stabilities of all BIAT derivatives (L= Cl, OH, OAc, OMe) were studied and the degradation patterns as well as the enthalpies of degradation were measured by thermal gravimetric analysis coupled with differential scanning calorimetry. The reaction of various alkenes with BIAT-Cl in the presence of Cu(OTf)<sub>2</sub> at room temperature yielded chloro-tetrazolylated products. The oxidation of thioanisole with BIAT-Cl under various reaction conditions is also reported.


1989 ◽  
Vol 54 (12) ◽  
pp. 3253-3259
Author(s):  
Jaroslav Podlaha ◽  
Miloš Buděšínský ◽  
Jana Podlahová ◽  
Jindřich Hašek

The unusual product of the reaction of 2-chloroacrylonitrile with ethane thiol and following hydrogen peroxide oxidation was found to be (E)-1,2-bis(ethylsulphonyl)cyclobutane-1,2-dicarbonitrile by means of X-ray crystallography. 1H and 13C NMR study of this compound has proven the same conformation of the molecule in solution.


2000 ◽  
Vol 78 (5) ◽  
pp. 590-597 ◽  
Author(s):  
Umarani Rajalingam ◽  
Philip AW Dean ◽  
Hilary A Jenkins

The complex salts CdL4(O3SCF3)2 (L = 2(1H)-pyridinethione (Py2SH), 4(1H)-pyridinethione (Py4SH), or 2(1H)-quinolinethione (Q2SH)) have been synthesized by the stoichiometric reaction of Cd(O3SCF3)2 and the appropriate thione. Both ambient-temperature 13C and reduced-temperature 111Cd NMR of CdL4(O3SCF3)2 in solution are consistent with L being bound through sulfur. Reduced-temperature NMR (31P, 77Se, 111Cd, as appropriate) of mixtures of CdL4(O3SCF3)2 and Cd(EPCy3)4(O3SCF3)2 (E = Se, Cy = c-C6H11) and of Cd(EPCy3)4(O3SCF3)2 (E = S, Se) and L in solution provides evidence for various [CdLn(EPCy3)4-n]2+. Similarly, reduced-temperature metal NMR of [CdL4]2+ and [CdL'4]2+ (L, L' = Py2SH, Py4SH, Q2SH; L not equal L') in solution shows the formation of [CdLnL'4-n]2+. Thus it has been demonstrated that at reduced temperature [CdL4]2+ is intact in solution and exchange of L is slow on the timescale of the metal chemical shift differences. From the NMR studies of Cd(EPCy3)4(O3SCF3)2 (E = S, Se):L mixtures, the binding preferences are found to be L > EPCy3 in solution. Similarly, from the reduced temperature metal NMR spectra of mixtures where L and L' compete for Cd(II) in solution, the binding preferences are Py4SH > Py2SH > Q2SH. The structure of Cd(Py2SH)4(NO3)2 (4) has been determined by single crystal X-ray analysis. Colorless crystals of 4 are tetragonal, I4(1)/acd with 8 molecules per unit cell of dimensions a = 18.660(3), c = 15.215(3) Å. The structure is comprised of recognizable NO3- anions and [Cd(Py2SH)4]2+ cations. In the cations, which have S4 symmetry, the ligands are S-bound. A network of NH···O hydrogen bonds links the cations and anions.Key words: aromatic heterocyclic thiones, cadmium complexes, phosphine chalcogenides, 111Cd, 31P, 77Se NMR, X-ray crystallography.


1987 ◽  
Vol 65 (2) ◽  
pp. 261-270 ◽  
Author(s):  
R. A. Bell ◽  
B. E. Brown ◽  
M. Duarte ◽  
H. E. Howard-Lock ◽  
C. J. L. Lock

1,1,3,3-Tetracyanopropane, 1, was prepared in low yields by a literature method with 2,2,4,4,6-pentacyanocyclohexenamine, 2, as a major by-product. The products were examined by X-ray crystallography. 1 has an orthorhombic space group, Pbcn (No. 60) with cell dimensions, a = 7.158(2), b = 10.510(3), c = 9.733(2) Å and has four formula units in the unit cell. 2 has a monoclinic cell, P21/c (No. 14) with cell dimensions a = 14.368(3), b = 6.626(1), c = 12.300(2) Å, β = 115.60(1)° and has 4 formula units in the unit cell. Data were collected with use of MoKα radiation and a Nicolet P3 diffractometer. The crystal structures were determined by standard methods and refined to Rw = 0.037 (1) and Rw = 0.040 (2) on the basis of 782 and 2108 unique reflections. Bond lengths and angles in the two compounds are normal. 2 has what has been considered to be the less likely tautomeric structure. Both compounds were examined by 1H, 13C nmr, vibrational spectroscopy, and mass spectroscopy. For 2 there was no evidence of the alternative tautomeric structure. New methods were developed for the preparation of both compounds and the mechanism of the original reaction rationalized.


2005 ◽  
Vol 60 (10) ◽  
pp. 1049-1053 ◽  
Author(s):  
Zeanab Talaei ◽  
Ali Morsali ◽  
Ali R. Mahjoub

Two new ZnII(phen)2 complexes with trichloroacetate and acetate anions, [Zn(phen)2(CCl3COO)- (H2O)](ClO4) and [Zn(phen)2(CH3COO)](ClO4), have been synthesized and characterized by elemental analysis, IR, 1H NMR, 13C NMR spectroscopy. The single crystal X-ray data of these compounds show the Zn atoms to have six-coordinate geometry. From IR spectra and X-ray crystallography it is established that the coordination of the COO− group is different for trichloroacetate and acetate. The former acts as a monodentate whereas the latter acts as a bidentate ligand.


Sign in / Sign up

Export Citation Format

Share Document