Ab initio studies of isocyanatoborane and difluoroisocyanatoborane; bent or linear BNCO chains?

1991 ◽  
Vol 69 (6) ◽  
pp. 1000-1005 ◽  
Author(s):  
Susan Ellis ◽  
Edward G. Livingstone ◽  
Nicholas P. C. Westwood

Ab initio calculating at the 3-21G, 6-31G*, 6-31G**, 6-311G*, and 6-311G** Hartree–Fock levels, have been performed on the unknown H2BNCO and F2BNCO molecules in order to establish the geometries of these isoelectronic propadienone analogues. For H2BNCO the double split valence basis sets lead to linear BNCO chains, whereas either a triple split valence basis set, or the inclusion of correlation to second order (MP2/6-31G*) gives trans-bent structures. These have angles at nitrogen of 153.6° (6-311G*) or 149.9° (MP2/6-31G*), with the potential surface for angle bending extremely flat, and 0.5 kJ mol−1 (6-311 G*) or 1.12 kJ mol−1 (MP2/6-31 G*) separating the C2v and Cs structures. For the bent structures there is a small trans-bend (4–6°) at the carbon atom. The F2BNCO molecule is also linear at the 3-21G level, but is, however, already trans-bent (145.6° at nitrogen, 175.9° at carbon) at the 6-31G* Hartree–Fock level; 1.47 kJ mol−1 separates the bent and linear structures. The triple split valence basis set 6-311G* leads to a further decrease in the angle at nitrogen (141.0°), and a similar NCO angle (175.9°), with the bent structure favoured by 3.85 kJ mol−1. MP2/6-31G* calculations give a minimum with an angle at nitrogen of 140.2°, and a bent-linear energy difference of 3.58 kJ mol−1. Key words: ab initio calculations, isocyanatoboranes, structures, quasilinearity, propadienone analogues.

1978 ◽  
Vol 31 (11) ◽  
pp. 2349 ◽  
Author(s):  
BG Gowenlock ◽  
L Radom

Ab initio molecular orbital calculations using the restricted Hartree-Fock approach have been carried out for nitrosyl cyanide and related species on the ONCN potential surface. Full geometry optimizations have been performed with the minimal STO-3G and split-valence 4-31G basis sets. Calculated (4-31G) geometries are in good agreement with available experimental data as are the energy changes in the reactions ONCN → NO + CN and NO + CN → N2 + CO. Possible mechanisms are discussed.


1996 ◽  
Vol 51 (5-6) ◽  
pp. 549-553 ◽  
Author(s):  
Valentin P. Feshin ◽  
Mikhail Yu. Konshin

Abstract The results of ab initio and MNDO calculations of the Cl2C = CHOCH3 , XCOCl (X = CH3 , OCH3 and COCl), 4-ClC6H4CH2Cl, (CNCl)3 and PCl5 with total optimization of their geometry are presented. The ab initio calculations were executed using Hartree-Fock theory and the split valence basis set 6-31G* (RHF/6-31 G*//RHF/6-31G*). Using the calculated p-orbital populations of the CI atoms in these molecules the 35Cl NQR frequencies and asymmetry parameters of the EFG at the 35Cl nuclei have been determined. When the populations of the less diffuse components of orbitals in the split valence basis set are used the calculated and experimenal ν and η values are in good agreement. Linear correlations between these calculated and corresponding experimental ν and η values are obtained. The causes of the nonconformity of the earlier calculated ν and η values and their experimental ones are analysed.


1976 ◽  
Vol 29 (8) ◽  
pp. 1635 ◽  
Author(s):  
L Radom

Ab initio molecular orbital theory with the minimal STO-3G and split-valence 4-31G basis sets is used to obtain geometries of 18 anions:OH-, NH2-, HF2-, BH4-, BF4-, C22-, CN-, NCN2-, N3-, NO2-, NO3-, 0CCO2-, CO32-, HCOO-, CH3COO-, C2O42-, C4O42- and C(CN)3-. The theoretical results are compared with experimental results from the literature. The STO-3G basis set performs somewhat worse for anions than for neutral molecules. On the other hand, the 4-31G basis set gives good results and predicts bond lengths to within 0.02� for all the molecules considered. Limited information on bond angle predictions suggests that these are of comparable quality to those for neutral molecules. The tricyanomethanide ion is predicted to be planar.


1991 ◽  
Vol 69 (11) ◽  
pp. 1845-1856 ◽  
Author(s):  
J. F. Sullivan ◽  
Aiying Wang ◽  
Mei-Shiow Cheng ◽  
J. R. Durig

The Raman spectra (3200–50 cm−1) of gaseous, liquid, and solid 2-chloropropane-d3 (isopropyl-d3 chloride), CH3(CD3)CHCl, and the infrared spectra (3200–50 cm−1) of the gas and solid have been recorded. The torsional transitions observed in the far infrared spectrum of the gaseous sample recorded at a resolution of 0.10 cm−1 between 265 and 135 cm−1 were analyzed in terms of the semirigid rotor model. An effective barrier of 1378 ± 4 cm−1 (3.94 ± 0.01 kcal/mol), cosine–cosine coupling term of 166 ± 10 cm−1 (0.47 ± 0.03 kcal/mol), and sine–sine coupling term of −173 ± 1 cm−1 (−0.49 ± 0.01 kcal/mol) were determined by fitting ten observed frequencies arising from the CH3 and CD3 torsions. The assignment of the 27 fundamentals is given and discussed. A complete equilibrium geometry, barrier to internal rotation, and vibrational frequencies have been determined by ab initio Hartree–Fock gradient calculations employing either 3-21G* or 6-31G* basis sets for both the d0 and d3 species. These calculated results are compared to the experimental values as well as to the corresponding quantities for some similar molecules. Key words: 2-chloropropane, vibrational spectrum; ab initio calculations; barrier to internal rotation.


1973 ◽  
Vol 26 (5) ◽  
pp. 921 ◽  
Author(s):  
RD Brown ◽  
GR Williams

The simplified ab-initio molecular-orbital method described previously is particularly suited to the calculation of polarizabilities by the non-perturbative coupled Hartree-Fock technique. Trial calculations on CO and HF, for which comparison with corresponding ab-initio calculations is possible, show that the method gives an adequate numerical performance. Minimal basis set calculations in general tend to give values that are considerably too low because of inadequate flexibility of the basis and this is the origin of the large discrepancy between theory and experiment, especially for small molecules. ��� Results are also reported for N2O and O3. For these larger systems the SAI results with minimal basis sets are noticeably nearer experimental values. The polarizability anisotropy for N2O is particularly well reproduced by the SAI method. �


2010 ◽  
Vol 8 (3) ◽  
pp. 397-403 ◽  
Author(s):  
Hanggara Sudrajat ◽  
Ria Armunanto

Molecular structures were optimized for the calix[4]arene by ab initio method at the Hartree-Fock level of theory using LANL2DZ and 6-311G basis sets. Conformational equilibrium of four calix[4]arene conformers are reported. The results are compared with experiment, force field, and semiempirical molecular orbital calculations. General trends in relative stabilities of calix[4]arene decrease in following order: cone > partial-cone > 1,2-alternate > 1,3-alternate. The most stable conformer is the cone conformer that is stabilized by an array of four hydrogen bonds and these results agree with the reported experimental observations. All structures were analyzed using theoretical IR, UV-Vis, and 1H NMR spectra attributed to the conformational equilibrium at the Hartree-Fock level of theory using LANL2DZ basis set.     Keywords: ab initio calculation, calix[4]arene, conformations, cone


1998 ◽  
Vol 53 (10) ◽  
pp. 1223-1235
Author(s):  
Inge Warttmann ◽  
Günter Häfelinger

AbstractAb initio Hartree-Fock (HF) and density functional (DFT) optimizations on the test m olecule osmiumtetracarbonyldihydride (13) with various basis sets show that the lanl2mb pseudopotential basis set for osmium leads in the HF approximation to more reliable molecular geometries than the DFT calculations. This HF procedure was used for the optimizations of molecular geometries of three isomeric 4,4,4,4,17,17,17,17-octacarbonyl-4,17-diosma[7.7]ortho-, meta- and paracyclophanes 1 to 3, of which 3 was found to be predestined for formation of various host-guest complexes with possible guests benzene (4), fluorobenzene (5), 1,3,5- trifluorobenzene (6), 1,2,4,5-tetrafluorobenzene (7), hexafluorobenzene (8), fluoroanil (9), tetrafluoroethene (10), tetracyanoethene (11) and aniline (12). Results of optimized hostguest geometries are presented graphically for inclusions and associations of guest 4 to 12 with 3. Calculated lanl2mb interaction energies, after correction for basis set superposition error (BSSE), remain favourable only for inclusion of 5 and associations of 5, 10, 11 and 12. Additionally lanl2dz single point calculations for inclusion, which may not need BSSE correction because of the improved basis set, are favourable for 6 and 12. According to lanl2mb HOMO and LUMO energies, 3 may as well easily donate or accept electrons. This may be an interpretation to the surprising effect, that Mulliken total charges are positive on the electron accepting guest molecules 4 to 11. There are geometrical peculiarities in the optimized host-guest complexes for inclusion and association. Fluorine atoms of 5 to 10 and nitrogen atoms of a cyano group of 11 and the amino group of 12 like to come close to one or two carbonyl groups. Similar distances of 2.70 Å to 3.57 Å between the O atom of the carbonyl group and the F atom or N atom appear in all optimizations of inclusion and association of 5 to 12 except in the case of association of tetrafluoroethene (10).


2002 ◽  
Vol 57 (12) ◽  
pp. 974-976
Author(s):  
Dmitry B. Shlyapnikov ◽  
Valentin P. Feshin

Ab initio calculations of organic and organometallic molecules at RHF, B3LYP and MP2 levels and 6-31G(d), 6-31+G(d), 6-311G(d) and 6-311+G(d) basis sets were executed. They were used to estimate the 35Cl NQR frequencies of these molecules. A satisfactory agreement between experimental and estimated NQR frequencies was obtained for the populations of the less diffuse 3p-components of the Cl atom valence p-orbitals obtained from the RHF, B3LYP and MP2 calculations with the split valence basis sets 6-31G(d) and 6-31+G(d). An analogous conformity was not obtained using the 6-311G(d) and 6-311+G(d) basis sets.


2000 ◽  
Vol 78 (2) ◽  
pp. 224-232 ◽  
Author(s):  
Bo-Cheng Wang ◽  
Yun-Shan Lin ◽  
Jian-Chuang Chang ◽  
Pei-Yu Wang

The results of ab initio calculations with the 6-31G basis sets on azulene and its derivatives (including azulenequinones and diazoazulenequinones) are presented in accordance with considerations of their structures and bonding. Azulene is a non-alternant compound with ten π electrons and has either a Cs or C2v symmetry depending on the different carbon bonding. The semiempirical and HF ab initio calculations converge to a Cs symmetry and the DFT and MP2 calculations converge to a C2v symmetry as a ground state structure of azulene. The CIS calculations describe the excited state of azulene and the first excitation energy (S0 - S1) is 533 nm (CIS/6-31+G*), which could illustrate the azure color of azulene. According to the geometry analysis, there are 16 geometrical isomers in azulenequinone conjugated diketones of azulene. Ab initio calculation with the 6-31G basis set generates 1,5- and 1,7-azulenequinone being the most stable isomers of azulenequinone. Theoretically, the relative stability of the bromination product of azulenequinones indicates that 7-bromo-1,5-azulenequinone and 3-bromo-1,7- azulenequinone (for monobromoazulenequinones) and 3,7-dibromo-1,5- azulenequinone and 3,5-dibromo-1,7-azulenequinone (for dibromoazulenequinones) are more stable isomers. The product of diazotization of amino- bromoazulenes is diazoazulenequinone in which a diazo group replaces a ketone group. Isomeric 1,8- and 1,2-diazoazulenequinones are the most stable isomers of diazoazulenequinone according to the theoretical consideration. Due to the resonance and relative stability, diazoazulenequinone may easily extrude nitrogen and form the corresponding triplet ketocarbene intermediate and electronic isomers that undergo photoreaction with THF leading to a polyether bridged azulene (crown type ether). The cyclic reactions in diazoazulenequinone are also studied.Key words: azulene, azulenequinone, diazoazulenequinone, ab initio.


Sign in / Sign up

Export Citation Format

Share Document