The photochemistry of 3,3′,4,4′-tetramethoxy-and 4-hydroxy-3,3′,4′-trimethoxystilbene — models for stilbene chromophores in peroxide-bleached, high-yield wood pulps

1996 ◽  
Vol 74 (2) ◽  
pp. 263-275 ◽  
Author(s):  
William J. Leigh ◽  
T. Johnathan Lewis ◽  
Vincent Lin ◽  
J. Alberto Postigo

The photochemistry of the title compounds has been investigated in ethanol and tetrahydrofuran solution under aerobic and anaerobic conditions. Direct irradiation of trans-3,3′,4,4′-tetramethoxystilbene (trans-1) in deoxygenated ethanol leads to the rapid establishment of a photostationary state with the cis isomer, and the slower formation of the ethyl ether corresponding to addition of ethanol across the olefinic C=C bond and cyclobutane dimers. The same products are formed upon photolysis in the presence of oxygen under the same conditions but, in addition, two isomeric tetramethoxyphenanthrenes and 3, 4-dimethoxybenzaldehyde are formed. Photolysis of trans-1 in oxygenated tetrahydrofuran leads to the same products in different relative yields. Quantum yields for cis, trans photoisomerization, phenanthrene formation, and addition of ethanol have been determined by ferrioxalate actinometry. Direct irradiation of tran-4-hydroxy-3,3′,4′-trimethoxystilbene (trans-2) in ethanol solution also results in rapid cis–trans isomerization and the formation of (three) isomeric phenanthrene derivatives in photolyses carried out in the presence of oxygen, although the material balance is low. The various products of photolysis of trans-2 have been independently synthesized by desilylation of the products isolated from photolysis of trans-4-tert-butyldimethylsiloxy-3,3′,4′-trimethoxystilbene (trans-3) under similar conditions. Fluorescence-quenching experiments have been carried out to determine the relative rates of quenching of the excited singlet states of trans-1 and trans-2 by alcohols and oxygen. The formation of aldehydes is proposed to arise via reaction of superoxide ion with stilbene radical cations, which are formed by electron-transfer quenching of the stilbene excited singlet state by oxygen. Key words: stilbenes, lignin, photochemistry, photooxidation.


1969 ◽  
Vol 47 (15) ◽  
pp. 2781-2786 ◽  
Author(s):  
E. Cavalieri ◽  
S. Horoupian

Whereas direct irradiation (2537 Å) of 5,6-dihydro-4,6,6-trimethyl-2(1H)-pyridone 1 (1a) produced almost exclusively the cleavage products 2 and 3, the acetophenone sensitized reaction (3500 Å) gave a single cyclobutane dimer. In contrast, direct (2537 Å) or sensitized (acetophenone, 3500 Å) irradiation of the homo derivative 7 of compound 1 gave approximately the same mixture of two cyclobutane dimers. It was thus demonstrated that dimer formation proceeded by way of a triplet excited state and that the cleavage reaction most probably occurred via an excited singlet state.A structure for each cyclobutane dimer in the seven-membered series was proposed on the basis of its spectral properties.



1989 ◽  
Vol 42 (4) ◽  
pp. 593 ◽  
Author(s):  
HD Becker ◽  
BW Skelton ◽  
H Sorensen ◽  
AH White

(E)-9-(2-Nitropropeny1)anthracene and (E)-9-(2-nitro-2-phenylethenyl)anthracene have been prepared by piperidine-catalysed condensation of 9-anthraldehyde with nitroethane and nitro(phenyl)methane, respectively. The corresponding (Z)-compounds were obtained by photochemical isomerization, quantum yields of geometrical isomerlzation being measured in cyclohexane, benzene, dichloromethane and ethanol. In virtually all solvents the (Z)-isomers are favoured at the photostationary state. The structures of (E)- and (2)-942- nitro-2-phenylethenyl)anthracene have been established by single-crystal X-ray diffraction studies.



2020 ◽  
Author(s):  
Neskarlys Rios ◽  
Franmerly Fuentes ◽  
Juan Manuel Garcia Garfido ◽  
Yomaira Otero

<div>A new phosphole derivative 2,5-di(2-quinolyl)-1-phenylphosphole (<b>1</b>) was synthesized by using the Fagan-Nugent method. Phosphole was obtained as an air stable solid in high yield (73%). Additionally, two new copper phosphole complexes [CuX(Phosphole)<sub>2</sub>] (X = Cl (<b>2a</b>), I (<b>2b</b>), Phosphole = <b>1</b>) have been synthesized by reaction of CuX (X = Cl, I) and phosphole derivative (<b>1</b>). All compound were characterized by NMR, ESI-MS, UV–Vis and fluorescence spectroscopy. The photophysical properties of all compounds were analyzed, UV-Vis spectra of the complexes <b>2a-b</b> shown π–π* transitions with shift very similar to the found in the free phosphole due to that their symmetrical structures inhibits efficient ILCT. We have found that the compounds <b>1</b>, <b>2a-b</b> exhibited fluorescence between 460 and 583 nm with quantum yields of Φ<sub>f</sub> = 0.04 – 0.11. The emission energy of <b>2b</b> is higher than <b>2a</b>, suggesting that λ<sub>max</sub> is affected by the ligand-field strength of the halogen ions in the complexes (I<sup>-</sup> < Cl<sup>-</sup> ).</div>



2020 ◽  
Author(s):  
Neskarlys Rios ◽  
Franmerly Fuentes ◽  
Juan Manuel Garcia Garfido ◽  
Yomaira Otero

<div>A new phosphole derivative 2,5-di(2-quinolyl)-1-phenylphosphole (<b>1</b>) was synthesized by using the Fagan-Nugent method. Phosphole was obtained as an air stable solid in high yield (73%). Additionally, two new copper phosphole complexes [CuX(Phosphole)<sub>2</sub>] (X = Cl (<b>2a</b>), I (<b>2b</b>), Phosphole = <b>1</b>) have been synthesized by reaction of CuX (X = Cl, I) and phosphole derivative (<b>1</b>). All compound were characterized by NMR, ESI-MS, UV–Vis and fluorescence spectroscopy. The photophysical properties of all compounds were analyzed, UV-Vis spectra of the complexes <b>2a-b</b> shown π–π* transitions with shift very similar to the found in the free phosphole due to that their symmetrical structures inhibits efficient ILCT. We have found that the compounds <b>1</b>, <b>2a-b</b> exhibited fluorescence between 460 and 583 nm with quantum yields of Φ<sub>f</sub> = 0.04 – 0.11. The emission energy of <b>2b</b> is higher than <b>2a</b>, suggesting that λ<sub>max</sub> is affected by the ligand-field strength of the halogen ions in the complexes (I<sup>-</sup> < Cl<sup>-</sup> ).</div>



1988 ◽  
Vol 43 (6) ◽  
pp. 583-590 ◽  
Author(s):  
Dieter Oelkrug ◽  
Klaus Rempfer ◽  
Ellen Prass ◽  
Herbert Meier

Abstract The absorption and fluorescence of three isomeric distyrylbenzenes are investigated as function of temperature. From the fluorescence decay times and fluorescence quantum yields two classes of oligostyrylarenes can be distinguished. A decisive criterion for this classification is, whether the first excited singlet state S1 belongs to an allowed or forbidden transition S0→S1.



Quantum yields of triplet state formation and extinction coefficients of the triplet states have been determined by direct depletion methods for solutions of anthracene, phenanthrene, 1,2,5,6-dibenzanthracene, fluorescein, dibromofluorescein, eosin and erythrosin. The values obtained for the hydrocarbons are in reasonable agreement with those obtained by other workers using energy transfer and heavy atom perturbation techniques. In all cases which we have studied, the sum of the quantum yields of fluorescence and triplet state formation is equal to unity within the limits of experimental error, showing that radiationless transfer from the excited singlet to the ground state is negligible.



The concentration dependences of the yield of excited triplet states, G ( 3 S*), and the concentration dependences of the relative yield of radiation-induced fluorescence obtained on pulse radiolysis of solutions of naphthalene, anthracene, pyrene and 2,5-diphenyloxazole (PPO) are reported. The yields of excited singlet state solute molecules, G ( 1 S*), formed on pulse radiolysis of naphthalene-cyclohexane and naphthalene-benzene solutions has been determined by comparing the intensity of the radiation-induced fluorescence with that obtained on photo-excitation. It is concluded that intersystem crossing (i.s.c.) from the excited singlet state is an important process in the formation of the high yield of triplet excited states of the solute. Under certain conditions this process accounts for up to 50 % of G ( 3 S*) in cyclohexane and the entire G ( 3 S*) in benzene solutions.



1969 ◽  
Vol 47 (18) ◽  
pp. 3345-3353 ◽  
Author(s):  
R. A. Cox ◽  
K. F. Preston

An investigation has been made into the effect of inert gas additions on product quantum yields for the photolysis at 2800 and 2490 Å of mixtures of ketene and oxygen and for the photolysis at 2800 Å of mixtures of ketene and carbon monoxide. Concentration ratios of O2 (or CO) to CH2CO were chosen so that the reaction of CH2(3Σg−) with CH2CO could be ignored and C2H4 formation could be attributed entirely to the reaction[Formula: see text]Quenching of the C2H4 quantum yield by inert gases was interpreted in terms of collisional deactivation of CH2(1A1) to the ground state[Formula: see text]and rate constant ratios k2/k1 have been determined for a number of gases: He (0.018), Ar (0.014), Kr (0.033), Xe (0.074), N2 (0.052), N2O (0.10), CF4 (0.047), C2F6 (0.11), and SF6 (0.045). It has been assumed that collision-induced intersystem crossover in excited singlet ketene makes an insignificant contribution to the observed quenching effects, but it has not been possible to verify this assumption experimentally. The mechanism of collision-induced electronic relaxation of singlet methylene is discussed in the light of the results.



1992 ◽  
Vol 70 (1) ◽  
pp. 272-279 ◽  
Author(s):  
Allyson L. Perrott ◽  
Donald R. Arnold

Irradiation of an acetonitrile solution of cis 1-methyl-2-phenylcyclopentane (1bcis); 1,4-dicyanobenzene (2), an electron-accepting photosensitizer; and 2,4,6-collidine (3), a nonnucleophilic base, leads to configurational isomerization of the cyclopentane; the photostationary state lies > 99% in favour of the trans isomer. The mechanism proposed for this reaction involves formation of the radical cation of 1bcis by photoinduced electron transfer to the singlet excited state of 2, deprotonation of the radical cation assisted by the base 3, reduction of the resulting benzylic radical by the radical anion [Formula: see text], and reprotonation of the benzylic anion to give both the cis and the trans isomers of 1b. The photostationary state is controlled by the relative rates of deprotonation of the radical cations of 1bcis and trans; these rates are dependent upon the extent of overlap of the SOMO of the radical cation, which is largely associated with the phenyl ring, and the benzylic carbon–hydrogen bond. Molecular mechanics calculations (MM3 and MMP2) are used to calculate the preferred conformations of the isomers. The required orbital overlap is 31% effective with the global minimum conformation of the cis isomer and essentially ineffective for the low-lying conformations of the trans isomer. This proposed mechanism is supported by Stem–Volmer quenching studies, which indicate that both isomers quench the singlet excited state of 2 at the diffusion-controlled rate, and by deuterium incorporation studies. When irradiation of the cis isomer is carried out in acetonitrile–methanol-O-d as solvent, isomerization is accompanied by deuterium exchange at the benzylic position; the trans isomer is stable under these conditions. Keywords: photosensitized electron transfer, radical cation, deprotonation, configurational isomerization, conformation, molecular mechanics (MM3).



Sign in / Sign up

Export Citation Format

Share Document