The importance of conformation in the reactivity of radical cations. Changing configuration at saturated carbon centres

1992 ◽  
Vol 70 (1) ◽  
pp. 272-279 ◽  
Author(s):  
Allyson L. Perrott ◽  
Donald R. Arnold

Irradiation of an acetonitrile solution of cis 1-methyl-2-phenylcyclopentane (1bcis); 1,4-dicyanobenzene (2), an electron-accepting photosensitizer; and 2,4,6-collidine (3), a nonnucleophilic base, leads to configurational isomerization of the cyclopentane; the photostationary state lies > 99% in favour of the trans isomer. The mechanism proposed for this reaction involves formation of the radical cation of 1bcis by photoinduced electron transfer to the singlet excited state of 2, deprotonation of the radical cation assisted by the base 3, reduction of the resulting benzylic radical by the radical anion [Formula: see text], and reprotonation of the benzylic anion to give both the cis and the trans isomers of 1b. The photostationary state is controlled by the relative rates of deprotonation of the radical cations of 1bcis and trans; these rates are dependent upon the extent of overlap of the SOMO of the radical cation, which is largely associated with the phenyl ring, and the benzylic carbon–hydrogen bond. Molecular mechanics calculations (MM3 and MMP2) are used to calculate the preferred conformations of the isomers. The required orbital overlap is 31% effective with the global minimum conformation of the cis isomer and essentially ineffective for the low-lying conformations of the trans isomer. This proposed mechanism is supported by Stem–Volmer quenching studies, which indicate that both isomers quench the singlet excited state of 2 at the diffusion-controlled rate, and by deuterium incorporation studies. When irradiation of the cis isomer is carried out in acetonitrile–methanol-O-d as solvent, isomerization is accompanied by deuterium exchange at the benzylic position; the trans isomer is stable under these conditions. Keywords: photosensitized electron transfer, radical cation, deprotonation, configurational isomerization, conformation, molecular mechanics (MM3).


1985 ◽  
Vol 63 (8) ◽  
pp. 2192-2196 ◽  
Author(s):  
René Lapouyade ◽  
Claude Manigand ◽  
Aziz Nourmamode

The photochemistry of five- to eight-membered ring containing 2-cycloalkenyl biphenyls was examined under direct and sensitized irradiation. From the singlet excited state only trans 9,10-cycloalkyl-9,10-dihydrophenanthrenes were obtained. From the triplet state the trans isomer was exclusively formed from 2-cyclopentenyl and 2-cyclohexenyl biphenyls while the cis isomer also appeared with 2-cycloheptenyl and 2-cyclooctenyl biphenyls. We propose that the cis isomers resulted from the cyclization of the perpendicular triplet of cycloheptenyl biphenyl and from the perpendicular and trans triplet of cyclooctenyl biphenyl. Whereas the photocyclization of 2-vinylbiphenyls was regarded as a singlet-state reaction, the quantum yields of reaction of 2-cycloalkenyl biphenyls, from both singlet and triplet states, were high (ΦS = 0.20–0.26; ΦT = 0.15–0.46).



1997 ◽  
Vol 75 (4) ◽  
pp. 384-397 ◽  
Author(s):  
A.L. Perrott ◽  
H.J.P. De Lijser ◽  
D.R. Arnold

The photosensitized (electron transfer) bond cleavage of some β-phenylethyl ether radical cations has been investigated. In previous studies the feasibility of the bond cleavage was thought to depend on the bond dissociation energy (BDE). However, this simple hypothesis led to several incorrect predictions and therefore additional criteria, conformational effects, were added to the hypothesis. This study has now been extended and additional examples of the importance of the conformation on the carbon–carbon bond cleavage of radical cations are provided. The four β-phenylethyl ethers studied are 2-methoxy-3-phenylbutane (9, both diastereomers), and cis- and trans-2-methyl-3-phenyltetrahydropyran (10c, 10t). Generally, bond cleavage will occur if the (calculated) BDE in the radical cation is less than 55 kJ/mol, and if there is significant overlap between the singly occupied molecular orbital (SOMO) and the vulnerable (C—C or C—H) bond. In the case of a β-phenylethyl ether radical cation, the alkoxy group must also be oriented so that an oxygen lone pair of electrons can overlap with the C—C sigma antibonding (σ*) orbital. The calculated BDE values of the vulnerable C—C bond in the radical cations of the four ethers studied here are well below the threshold value, 55 kJ/mol, and C—C cleavage will therefore be governed by conformational effects. Molecular mechanics (MM3) calculations were used to identify the most stable conformers of the neutral molecules. Based on the calculated angles and overlap between orbitals it was predicted that the global-minimum conformers of the ethers 9 and 10c would not give C—C bond cleavage products or deprotonation to any significant extent. The global minimum of ether 10t is well oriented for C—C cleavage but not for deprotonation. Irradiation of an electron-accepting photosensitizer, 1,4-dicyanobenzene (2), in the presence of the ethers showed that the ethers 9 did not cleave efficiently; no deprotonation or isomerization was observed. This is in good agreement with the predictions based on the MM3 calculations. Both ethers 10c and 10t gave reasonable yields of the C—C cleavage products; in fact, ether 10c cleaved more efficiently than 10t. This can be explained by the fact that a conformer of 10c, only 4.35 kJ/mol higher in energy than the global minimum, is perfectly aligned for cleavage. Ether 10t did not show any evidence for deprotonation whereas 10c did. This is also in good agreement with the calculations. Keywords: photoinduced electron transfer, radical cations, bond cleavage, conformation, molecular mechanics calculations.



2017 ◽  
Vol 19 (22) ◽  
pp. 14412-14423 ◽  
Author(s):  
Ewelina Krzyszkowska ◽  
Justyna Walkowiak-Kulikowska ◽  
Sven Stienen ◽  
Aleksandra Wojcik

Quenching of the thionine singlet excited state in covalently functionalized graphene oxide with an efficient back electron transfer process.



1991 ◽  
Vol 69 (2) ◽  
pp. 225-233 ◽  
Author(s):  
Donald R. Arnold ◽  
Laurie J. Lamont ◽  
Allyson L. Perrott

The reactivity of the radical cations of methyl 2,2-diphenylcyclohexyl ether (7), 6,6-diphenyl-1,4-dioxaspiro[4.5]decane (8), methyl cis- and trans-2-phenylcyclohexyl ether (9cis and trans), and 6-phenyl-1,4-dioxaspiro[4.5]decane (10), generated by photosensitized (electron transfer) irradiation, has been studied. Solutions of the ethers and acetals in acetonitrile–methanol (3:1), with 1,4-dicyanobenzene (2) serving as the electron acceptor, were irradiated with a medium-pressure mercury vapour lamp through Pyrex. The diphenyl derivatives 7 and 8 were reactive; 7 gave 6,6-diphenylhexanal dimethyl acetal (11) and 8 gave 2-methoxy-2-(5,5-diphenylpentyl)-1,3-dioxolane (12). These are the products expected from the intermediate 1,6-radical cation, formed upon carbon–carbon bond cleavage of the cyclic radical cation. The monophenyl derivatives 9cis and trans and 10 were stable under these irradiation conditions. The mechanism for the carbon–carbon bond cleavage and for the cis–trans isomerization is discussed. An explanation, based upon conformation, is offered for the lack of reactivity of 9 and 10. Molecular mechanics (MM2) calculations were used to determine the preferred conformation of 9cis and trans, and 10. Key words: photosensitization, electron transfer, radical cation, carbon–carbon bond cleavage, conformation.



1987 ◽  
Vol 65 (7) ◽  
pp. 1599-1607 ◽  
Author(s):  
B. Foster ◽  
B. Gaillard ◽  
N. Mathur ◽  
A. L. Pincock ◽  
J. A. Pincock ◽  
...  

Singlet excited state rate constants have been measured for both the heterolytic and homolytic photocleavage of 3- and 4-methoxy and 3- and 4-cyano (1-naphthylmethyl)trimethylammonium chlorides, 6–10. The results are interpreted in terms of the meta effect or changes in charge distribution upon excitation and the competition between bond cleavage, electron transfer, and hydrogen atom transfer in the contact pairs resulting from the two types of cleavage.





1987 ◽  
Vol 65 (9) ◽  
pp. 2312-2314 ◽  
Author(s):  
Donald R. Arnold ◽  
Shelley A. Mines

The photosensitized (electron transfer) irradiation of several conjugated 1,1-diphenyl alkenes, in acetonitrile with 1,4-dicyanobenzene or 1-cyanonapthalene as electron accepting sensitizer and 2,6-lutidine as base, leads essentially quantitatively to tautomerization to the less stable unconjugated isomer(s). The proposed mechanism for this reaction involves formation of the alkene radical cation and sensitizer radical anion followed by deprotonation of the radical cation, reduction of the resulting radical to the ambident anion by back electron transfer from the radical anion, and reprotonation. There are several steps in this mechanism that could control the ratio of isomers. Evidence is provided that, at least in some cases, it is the relative rate of deprotonation from the isomeric radical cations that is the determining factor. This rate is influenced by the conformation of the radical cation; the carbon–hydrogen bond involved in the deprotonation step must overlap with the singly occupied molecular orbital.



1991 ◽  
Vol 69 (5) ◽  
pp. 839-852 ◽  
Author(s):  
Donald R. Arnold ◽  
Xinyao Du ◽  
Kerstin M. Henseleit

The effect of meta- and para-methoxy substitution on the reactivity of some radical cations has been determined. The compounds chosen for study were 1-(3-methoxyphenyl)-1-phenylethylene (7), 1-(4-methoxyphenyl)-1-phenylethylene (8), 3-(3-methoxyphenyl)indene (9), 3-(4-methoxyphenyl)indene (10), methyl 2-(3-methoxyphenyl)-2-phenylethyl ether (11), methyl 2-(4-methoxyphenyl)-2-phenylethyl ether (12), cis- and trans-2-methoxy-1-(3-methoxyphenyl)indane (13), and cis- and trans-2-methoxy-1-(4-methoxyphenyl)indane (14). The radical cations of these compounds were generated by photosensitization (electron transfer) using 1,4-dicyanobenzene (3) as the electron acceptor. The three reactions studied were: (1) The addition of nucleophiles (methanol) to the radical cation of the arylalkenes, a reaction that yields the anti-Markovnikov addition product. (2) The carbon–carbon bond cleavage of radical cations, which yields products derived from the radical and carbocation fragments. (3) The deprotonation of the radical cation, a reaction that can be used to invert the configuration at a saturated carbon centre. The mechanisms of these reactions are discussed and the factors that need to be considered in order to predict reactivity are defined. Molecular orbital calculations (UHF/STO-3G) were carried out on the radical cations of the model compounds 3- and 4-vinylanisole and 3- and 4-methylanisole. Key words: photochemistry, photosensitize (electron transfer), radical cation, radical.



1991 ◽  
Vol 69 (3) ◽  
pp. 521-527 ◽  
Author(s):  
Michel Albrand ◽  
René Dolmazon ◽  
Patrick Pollet

A synthetic route to perhydrocyclododeca[b]furan-3-ols, perhydrocyclododeca[b]furan-3-ones, and perhydrocyclododeca[b]furan derivatives is described. Their configurations were determined. For the perhydrocyclododeca[b]furan-3-one and perhydrocyclododeca[b]furan pairs, the cis isomer was much less stable than the trans isomer. This agrees well with results from a conformational analysis, carried out by molecular mechanics. The 1H and l3C NMR spectra are reported. Key words: perhydrocyclododeca[b]furans, conformations, force field calculations, 1H and 13C NMR.



1997 ◽  
Vol 22 (0) ◽  
pp. 83-92
Author(s):  
Marinônio Lopes CORNÉLIO

Photoacoustic spectroscopy provides information about both amplitude and phase of the response of a system to an optical excitation process. This paper presents the studies of the phase in the electron transfer process between octaethylporphyn (OEP) and quinone molecules dispersed in a polymeric matrix. It was observed a tendency in the phase behavior to small values only in the spectral region near to 620 nm, while for shorter wavelength did not show any tendency. These measurements suggested that the electron transfer to acceptor occurred with the participation of octaethylporphyn singlet excited state.



Sign in / Sign up

Export Citation Format

Share Document