Photochemical nucleophile–olefin combination, aromatic substitution (photo-NOCAS) reaction, Part 12. Factors controlling the regiochemistry of the reaction with alcohol as the nucleophile

1996 ◽  
Vol 74 (11) ◽  
pp. 2143-2166 ◽  
Author(s):  
Donald R. Arnold ◽  
Mary S. W. Chan ◽  
Kimberly A. McManus

The photo-NOCAS reaction that combines methanol, serving as the nucleophile, and the radical cation of 4-methyl-1,3-pentadiene (14+•), substituting on the 1,4-dicyanobenzene radical anion (1−•), yields (E)-1-(4-cyanophenyl)-4-methoxy-4-methyl-2-pentene (15) as the major product. This regioisomer arises from bonding of methanol to C-4, the more heavily alkyl-substituted carbon of the diene, giving the less alkyl-substituted allylic radical. All previous examples of the photo-NOCAS reaction have yielded major adduct(s) having regiochemistry consistent with the anti-Markovnikov rule; the more heavily substituted (more stable?) β-alkoxyalkyl radical was the predominant intermediate. Empirically derived heats of formation and high-level ab initio molecular orbital calculations (MP2/6-31G*//HF/6-31G*) provide convincing evidence that of the two alternative allylic radicals, generated upon addition of methanol to 14+•, that which has the more alkyl substituted allylic radical moiety is, in fact, not the more stable. Of course, the total structure of the intermediate must be considered; the stabilizing effect of alkyl substitution on the carbon next to the oxygen of the ether moiety cannot be ignored. Ab initio molecular orbital calculations (MP2/6-31G*//HF/6-31G*) are reported for the radical cations of 2-methylpropene (2+•), 2-methyl-2-butene (6+•), 2-methyl-1,3-butadiene (9+•), 4-methyl-1,3-pentadiene (14+•), and 2,4-dimethyl-1,3-pentadiene (18+•) Calculations were also carried out on possible intermediates (bridged radical cations, distonic radical cations, and β-alkoxyalkyl radicals) involved upon reaction of these radical cations with methanol. Results of these calculations provide a basis for explaining/predicting the regiochemistry of the photo-NOCAS reaction involving methanol as the nucleophile: the major adduct(s) result(s) from attachment of methanol to that end of the alkene or diene which gives rise to the more stable intermediate radical. The more stable radical is not necessarily the more heavily alkyl substituted. Key words: photoinduced electron transfer, radicals, radical cations, ab initio molecular orbital calculations.


1998 ◽  
Vol 76 (9) ◽  
pp. 1238-1248 ◽  
Author(s):  
Donald R Arnold ◽  
Kimberly A McManus

The photochemical nucleophile-olefin combination, aromatic substitution (photo-NOCAS) reaction of methanol, 7-methyl-3-methylene-1,6-octadiene ( β-myrcene, 1), and 1,4-dicyanobenzene yields five 1:1:1 adducts:cis-2-(4-cyanophenyl)-4-(1-methoxy-1-methylethyl)-1-methylenecyclohexane (15), trans-2-(4-cyanophenyl)-4-(1-methoxy-1-methylethyl)-1-methylenecyclohexane (16), 1-(4-cyanophenylmethyl)-4-(1-methoxy-1-methylethyl)cyclohexene (17), 4-[4-methoxy-3,3-dimethylcyclohex-(E)-1-ylidenyl]methylbenzonitrile (18), and 4-(1-vinyl-4-trans-methoxy-3,3-dimethylcyclohexyl)benzonitrile (19). All of these adducts are cyclic; variation in the product ratio as a function of methanol concentration indicates cyclization is occurring, 1,6-endo, with both the initially formed radical cation and with the intermediate β-alkoxyalkyl radicals. Evidence based upon comparison of the ionization and oxidation potential of β-myrcene with model alkenes and with conjugated dienes indicates the initial electron transfer involves the trisubstituted mono alkene moiety; the diene moiety, mono-substituted at a nodal position, has a higher oxidation potential. High-level ab initio molecular orbital calculations (MP2/6-31G*//HF/6-31G*) provide useful information regarding the nature (relative energies and charge and spin distribution) of the intermediate radical cations, which supports the proposed reaction mechanism. Key words: photoinduced electron transfer, radicals, radical cations, β-myrcene, cyclization.



2006 ◽  
Vol 1 (6) ◽  
pp. 852-859 ◽  
Author(s):  
Osamu Takahashi ◽  
Katsuyoshi Yamasaki ◽  
Yuji Kohno ◽  
Kazuyoshi Ueda ◽  
Hiroko Suezawa ◽  
...  


1998 ◽  
Vol 102 (25) ◽  
pp. 4930-4938 ◽  
Author(s):  
Nathan E. Hall ◽  
Brian J. Smith


1995 ◽  
Vol 73 (4) ◽  
pp. 522-530 ◽  
Author(s):  
Donald R. Arnold ◽  
Xinyao Du ◽  
Huub J.P. de Lijser

The structure and reactivity of the radical cation of (+)-2-carene ((1S,6R)-3,7,7-trimethyl-cis-bicyclo[4.1.0]hept-2-ene (3)) have been studied. The radical cation was generated by photoinduced single electron transfer to the first electronically excited singlet state of 1,4-dicyanobenzene in acetonitrile–methanol (3:1). The 1:1:1 (methanol:2-carene:1,4-dicyanobenzene) adducts were formed: trans-3-(4-cyanophenyl)-4-(1-methoxy-1-methylethyl)-1-methylcyclohexene(14), and cis- (15) and trans-3-(4-cyanophenyl)-6-(1-methoxy-1-methylethyl)-3-methylcyclohexene (16) in a combined yield of 80%. The efficiency of the reaction and the yield of products were increased by the addition of biphenyl, serving as a codonor. These photo-NOCAS adducts formally result from cleavage of the three-membered ring of the 2-carene radical cation, at the C1—C7 bond, forming the tertiary carbocation and allylic radical. Reaction of the cation with methanol and coupling of the allylic radical with the 1,4-dicyanobenzene radical anion at the ipso position, followed by loss of cyanide ion, completes the sequence. There was no evidence for cleavage of the C1—C6 bond under these conditions; however, when the irradiation was carried out in acetonitrile (no methanol) the (+)-2-carene was partially racemized. Racemization is indicative of C1—C6 bond cleavage. The results of abinitio molecular orbital calculations (STO-3G) provide insight into the extent of C1—C7 bond cleavage in the radical cation. The calculated spin and charge distribution, on the 2-carene radical cation global minimum (3a+•), is consistent with the observed regiospecificity of adduct formation. Keywords: photoinduced electron transfer, radical ions, molecular orbital calculations, bond cleavage, 2-carene.



Ab initio molecular orbital calculations are used to explore additivity in the conformational energies of poly-substituted ethanes in terms of conformational energies of ethane and appropriate mono- and 1,2-di-substituted derivatives. Such relations would allow complex calculations for poly-substituted ethanes to be replaced by much simpler ones on a small number of parent molecules. General expressions for the linear combinations are derived from the assumption that interactions between vicinal substituents are pairwise additive and depend only on the vicinal dihedral angle. The additivity scheme is tested for 15 ethanes, di-, tri- or tetrasubstituted by cyano and methyl groups and for a smaller number of fluoroethanes. Additivity applies to within 0.1- 0.3 k J mol -1 in the methylethanes and mostly to within about 0.7- 0.8 kJ mol -1 in cyanoethanes. Large deviations are found among the geminally substituted fluoroethanes. It is suggested that the additivity approximation is most successful in the absence of strongly interacting geminal groups. Predictions are made of conformational energies of ten hexa(cyano- and methyl-) substituted ethanes.





1981 ◽  
Vol 36 (11) ◽  
pp. 1246-1252 ◽  
Author(s):  
Michael H. Palmer ◽  
Isobel Simpson ◽  
J. Ross Wheeler

The photoelectron spectra of the tautomeric 1,2,3,- and 1,2,4-triazole and 1,2,3,4-tetrazole systems have been compared with the corresponding N-methyl derivatives. The dominant tautomers in the gas phase have been identified as 2 H-1,2,3-triazole, 1 H-1,2,4-triazole and 2H-tetrazole.Full optimisation of the equilibrium geometry by ab initio molecular orbital methods leads to the same conclusions, for relative stability of the tautomers in each of the triazoles, but the calculations wrongly predict the tetrazole tautomerism.



Sign in / Sign up

Export Citation Format

Share Document