Characterization of humic substances extracted from Canadian lake sediments

1997 ◽  
Vol 75 (1) ◽  
pp. 14-27 ◽  
Author(s):  
Nelson Belzile ◽  
Helen A. Joly ◽  
Hongbo Li

Humic substances (HS) were extracted from the sediments of four Sudbury area lakes, namely, Tilton, Clearwater, Silver, and Ramsey Lakes, with the aid of 0.1 M Na4P2O7 and 0.5 M NaOH solutions. The HS (humic and fulvic acids) were purified and characterized using the methods of elemental analysis, visible spectroscopy (E4/E6 ratio), FTIR, and solid-state 13C CPMAS NMR. A substantial amount of information with regard to the composition and chemical nature of lake sediment HS was obtained. The results obtained for the Sudbury area lake sediments were compared with one another and with HS from other sources, such as soils. The elemental composition, atomic ratios, E4/E6 ratios, and FTIR and NMR features of the samples from the above lakes were found to be nearly identical, suggesting that HS formed in the Sudbury area have similar chemical properties. Compared with soil HS, the Sudbury lake sediments HS have undergone a low degree of aromatic condensation and are considerably more aliphatic in nature. Keywords: humic substances, characterization, lake sediments, extraction, 13C NMR.

2004 ◽  
Vol 39 (3) ◽  
pp. 233-240 ◽  
Author(s):  
Luciano Pasqualoto Canellas ◽  
Arnoldo Rocha Façanha

The aim of this work was to evaluate the humus composition from an Ultisol from Campos dos Goytacazes, RJ, Brazil. Soil samples of four depths (0-0.05, 0.05-0.10, 0.10-0.20 and 0.20-0.40 m) and its chemical nature were analysed by elemental composition, E4/E6 ratios and Fourier transformed infrared spectroscopy. The bioactivity of these humified substances was evaluated through their action on maize root growth and H+-ATPase activity of roots microsomes. In topsoil, the content of high condensed alkaline soluble humic substances is greater than that found in the subsuperficial layers. The chemical nature of humic and fulvic acids also varied with the soil depth. The humic acids isolated from the soil samples exhibited higher bioactivity compared with the fulvic acids. Moreover, the results suggest that more condensed humic substances can promote highest stimulation of the microsomal H+-ATPases from maize roots. These data reinforce the concept that the activity of the H+ pumps can be used as a biochemical marker for evaluation of humic substances bioactivity.


2014 ◽  
Author(s):  
◽  
Pinkie Sobantu

This project arose out the need for a simple method to analyse NOM on a routine basis. Water samples were obtained from the Vaal dam, which is one of the dams used by a hydroelectric power station. Analysis was preceded by separation of NOM into the humic and non-humic portions. The humic portion was separated into two fractions by employing a non-ionic resin (DAX-8) to separate humic acid from fulvic acid. High performance size exclusion chromatography (HPSEC), equipped with an Ultraviolet( UV) detector and an Evaporative Light Scattering (ELS) detector connected in series, was used to obtain molecular weight distribution information and the concentration levels of the two acids. Mixed standards of polyethylene oxide/glycol were employed to calibrate the selected column. Suwanee River humic acid standard was used as a certified reference material. The molecular weight distributions (MWDs) of the isolated fractions of humic and fulvic acids were determined with ELSD detection as weight-average (Mw), number-average (Mn) and polydispersity (ρ) of individual NOM fractions. The Mw/Mn ratio was found to be less than 1.5 in all the fractions, indicating that they have a low and narrow size fraction. An increase in Mn and Mw values, with increasing wavelength for all three humic substances (HS) examined was observed. The HS, isolated from the dam water, was found to be about the same molecular weight as the International Humic Acid Standard (IIHSS). For the fulvic acid standard, the molecular weight was estimated to be around 7500 Da. Characterization of NOM was done to assist in the identification of the species present in the water. FTIR-ATR was used to as a characterization tool to identify the functional groups in the structure of the humic and fulvic acid respectively present in the Vaal Dam. Analysis of the infrared (IR) spectra indicated that the humic acids of the Vaal dam have phenolic hydroxyl groups, hydroxyl groups, conjugated double bond of aromatic family (C=C), and free carboxyl groups. The isolation method has proved to be applicable and reliable for dam water samples and showed to successfully separate the humic substances from water and further separate the humic substances into its hydrophobic acids, namely, humic and fulvic acids. It can be concluded that the Eskom Vaal dam composes of humic substance which shows that the technique alone gives a very good indication of the characteristics of water. The HPSEC method used, equipped with UV and ELSD was able to identify the molecular weight range of NOM present in source water as it confirmed that the Eskom Vaal dam contains humic substances as humic acid and fulvic acid and these pose a health concern as they can form disinfectant byproducts in the course of water treatment with chemicals. FTIR characterization was successful as important functional groups were clearly assigned. Lastly, the use of the TOC and DOC values to calculate SUVA was also a good tool to indicate the organic content in water. It is recommended to use larger amounts of water must be processed to obtain useful quantities of the humic and fulvic acid fractions.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1067
Author(s):  
Aleksandra Ukalska-Jaruga ◽  
Romualda Bejger ◽  
Guillaume Debaene ◽  
Bożena Smreczak

The objective of this paper was to investigate the molecular characterization of soil organic matter fractions (humic substances (HS): fulvic acids-FAs, humic acids-HAs, and humins-HNs), which are the most reactive soil components. A wide spectrum of spectroscopic (UV–VIS and VIS–nearIR), as well as electrochemical (zeta potential, particle size diameter, and polydispersity index), methods were applied to find the relevant differences in the behavior, formation, composition, and sorption properties of HS fractions derived from various soils. Soil material (n = 30) used for the study were sampled from the surface layer (0–30 cm) of agricultural soils. FAs and HAs were isolated by sequential extraction in alkaline and acidic solutions, according to the International Humic Substances Society method, while HNs was determined in the soil residue (after FAs and HAs extraction) by mineral fraction digestion using a 0.1M HCL/0.3M HF mixture and DMSO. Our study showed that significant differences in the molecular structures of FAs, Has, and HNs occurred. Optical analysis confirmed the lower molecular weight of FAs with high amount of lignin-like compounds and the higher weighted aliphatic–aromatic structure of HAs. The HNs were characterized by a very pronounced and strong condensed structure associated with the highest molecular weight. HAs and HNs molecules exhibited an abundance of acidic, phenolic, and amine functional groups at the aromatic ring and aliphatic chains, while FAs mainly showed the presence of methyl, methylene, ethenyl, and carboxyl reactive groups. HS was characterized by high polydispersity related with their structure. FAs were characterized by ellipsoidal shape as being associated to the long aliphatic chains, while HAs and HNs revealed a smaller particle diameter and a more spherical shape caused by the higher intermolecular forcing between the particles. The observed trends directly indicate that individual HS fractions differ in behavior, formation, composition, and sorption properties, which reflects their binding potential to other molecules depending on soil properties resulting from their type. The determined properties of individual HS fractions are presented as averaged characteristics over the examined soils with different physico-chemical properties.


2001 ◽  
Vol 81 (3) ◽  
pp. 299-307 ◽  
Author(s):  
M C Wang ◽  
S H Chang

Humic substances are well known for their long-term persistence in soil environments. The relationship between the mean residence times (MRT) and characteristics of humic substances extracted from a soil with highorganic matter (OM) content in Taiwan was investigated. The MRTs of the soil organic matter (SOM) and its humic substances extracted from the soil samples taken from three depths (0–20, 40–60, and 70–150 cm) of a soil profile were determined by 14C-dating procedures. Moreover, the humic substances were subjected to elemental analysis and investigation by electron spin resonance (ESR), Fourier transform infrared (FTIR), and solid-state 13C nuclear magnetic resonance (13C NMR) spectroscopies. The ranges of the MRT of fulvic acids (FA) (MW < 1000), FA (MW > 1000), humic acid (HA) (MW > 1000), and humins (MW > 1000) were 143 ± 110 to 1740 ± 60, 213 ± 120 to 1690 ± 200, 253 ± 60 to 2200 ± 40, and 293 ± 40 to 2173 ± 70 yr, respectively. The higher standard deviations of the means of determined MRTs of FA (MW < 1000) and FAs (MW > 1000) may be due to their lability. Further, the MRTs of the FAs (MW < 1000), FAs (MW > 1000), HAs (MW > 1000), and humins (MW > 1000) increased with increasing soil profile depth, indicating the slow biological and chemical degradations of humic substances in the deeper layers. The elemental composition and spectroscopic properties of FTIR, 13C NMR, and ESR of humic substances did not change significantly with their MRTs. The MRTs in the range observed in this study were apparently long enough to render humic substances a high degree of chemical stability. Key words: Humic substances, mean residence times, ESR, FTIR, 13C NMR, humin


2021 ◽  
Author(s):  
Milanka Radulovic ◽  
◽  
Svetlana Mitrovski

Peat is a natural substrate for growth of microorganisms because it is rich in compounds that microorganisms can use as sources of carbon, nitrogen and growth factors. Peat originating from Vlasina lake in Eastern Serbia is especially rich in organic matter. The content of humic substances (humic acid, fulvic acid and humine) is almost twice that found in other peat-rich regions of similar origin and geochemical age. Humic and fluvic acids are known to promote microbial growth. In this work, humic and fulvic acids were first extracted from Vlasina lake peat and then added to minimal medium (synthetic, low ionic strength medium). The humic substances were added separately and combined in a 1:1 ratio by mass to study their individual and combined effect on microbial growth of Escherichia coli ATCC 25922 (Gr–), Staphyloccocus aureus (Gr+) i Aureobasidium pullulans, strain CH-1. The microbial growth was measured microspectrophotometrically over a 24-hour period and growth curves were obtained for a range of acid concentrations between 25 µg cm-3 and 100 µg cm-3. It was found that both humic and fulvic acids promote the growth of all three microorganisms by up to a maximum of 40%-80% the extent of which varied with the concentration of the acid and the identity of the microorganism. In general, humic acid was found to result in higher microbial growth (at highest concentrations, up to ~80% for all three microbial species).


2021 ◽  
Author(s):  
Aleksandra Ukalska-Jaruga ◽  
Romualda Bejger ◽  
Guillaume Debaene ◽  
Bozena Smreczak

&lt;p&gt;The objective of this paper was to investigate the molecular characterization of individual humic substances ( fulvic acids-FAs, humic ascids-HAs, and humins-HNs), which are the most reactive soil components and exhibit high sorption capacity in relation to various groups of organic contaminants. A wide spectrum of spectroscopic (UV-VIS, VIS-nearIR), as well as electrochemical (zeta potential, particle size diameter, polidyspersity index), methods were applied to find the relevant differences in the behavior, formation, composition and sorption properties of HS fractions derived from various mineral soils.&lt;/p&gt;&lt;p&gt;Soil material (n = 30) used for the study were sampled from the surface layer (0&amp;#8211;30 cm) of agricultural soils. FAs and HAs were isolated by sequential extraction in alkaline and acidic solutions, according to the International Humic Substances Society method, while HNs was determined in the soil residue (after FAs and HAs extraction) by mineral fraction digestion using a 0.1M HCL/0.3M HF mixture and DMSO.&lt;/p&gt;&lt;p&gt;Our study showed that significant differences in the molecular structures of FAs, HAs and HNs occurred. Optical analysis confirmed the lower molecular weight of FAs with high amount of lignin-like compounds and the higher weighted aliphatic&amp;#8211;aromatic structure of HAs. The HNs were characterized by a very pronounced and strong condensed structure associated with the highest molecular weight. HAs and HNs molecules exhibited an abundance of acidic, phenolic and amine functional groups at the aromatic ring and aliphatic chains, while FAs mainly showed the presence of methyl, methylene, ethenyl and carboxyl reactive groups. HS was characterized by high polydispersity related with their structure. FAs were characterized by ellipsoidal shape as being associated to the long aliphatic chains, while HAs and HNs revealed a smaller particle diameter and a more spherical shape caused by the higher intermolecular forcing between the particles.&amp;#160;&amp;#160;&lt;/p&gt;&lt;p&gt;The observed trends directly indicate that individual HS fractions differ in behavior, formation, composition and sorption properties, which reflects their binding potential to different group of organic contaminants, but the general properties of individual fractions are similar and do not depend on the type of soil.&lt;/p&gt;&lt;p&gt;&lt;em&gt;Acknowledgement: The studies were supported from the National Science Centre project No. 2018/29/N/ST10/01320 &amp;#8220;Analysis of the fractional composition and sorption properties of humic substances in relation to various groups of organic contaminants&amp;#8221;&lt;/em&gt;&lt;/p&gt;


Heliyon ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. e04078
Author(s):  
Wesley Machado ◽  
Júlio Cézar Franchini ◽  
Maria de Fátima Guimarães ◽  
João Tavares Filho

1990 ◽  
Vol 338 (3) ◽  
pp. 245-252 ◽  
Author(s):  
J. I. Kim ◽  
G. Buckau ◽  
G. H. Li ◽  
H. Duschner ◽  
N. Psarros

Proceedings ◽  
2019 ◽  
Vol 29 (1) ◽  
pp. 82
Author(s):  
Malina Desliu-Avram ◽  
Stefan-Ovidiu Dima ◽  
Anca-Andreea Turcanu ◽  
Elena Radu ◽  
Ana-Maria Stanciuc ◽  
...  

Humic substances (HS) are complex systems widely spread in nature as a result of the humification process of biomass, although hardly quantifiable and understood. Various polyphenols are considered to be the main precursors of HS. [...]


1994 ◽  
Vol 20 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Vivi-Ann Långvik ◽  
Nina Åkerback ◽  
Bjarne Holmbom

Sign in / Sign up

Export Citation Format

Share Document