EFFECT OF HUMIC AND FULVIC ACIDS ON MICROBIAL GROWTH

2021 ◽  
Author(s):  
Milanka Radulovic ◽  
◽  
Svetlana Mitrovski

Peat is a natural substrate for growth of microorganisms because it is rich in compounds that microorganisms can use as sources of carbon, nitrogen and growth factors. Peat originating from Vlasina lake in Eastern Serbia is especially rich in organic matter. The content of humic substances (humic acid, fulvic acid and humine) is almost twice that found in other peat-rich regions of similar origin and geochemical age. Humic and fluvic acids are known to promote microbial growth. In this work, humic and fulvic acids were first extracted from Vlasina lake peat and then added to minimal medium (synthetic, low ionic strength medium). The humic substances were added separately and combined in a 1:1 ratio by mass to study their individual and combined effect on microbial growth of Escherichia coli ATCC 25922 (Gr–), Staphyloccocus aureus (Gr+) i Aureobasidium pullulans, strain CH-1. The microbial growth was measured microspectrophotometrically over a 24-hour period and growth curves were obtained for a range of acid concentrations between 25 µg cm-3 and 100 µg cm-3. It was found that both humic and fulvic acids promote the growth of all three microorganisms by up to a maximum of 40%-80% the extent of which varied with the concentration of the acid and the identity of the microorganism. In general, humic acid was found to result in higher microbial growth (at highest concentrations, up to ~80% for all three microbial species).

2014 ◽  
Author(s):  
◽  
Pinkie Sobantu

This project arose out the need for a simple method to analyse NOM on a routine basis. Water samples were obtained from the Vaal dam, which is one of the dams used by a hydroelectric power station. Analysis was preceded by separation of NOM into the humic and non-humic portions. The humic portion was separated into two fractions by employing a non-ionic resin (DAX-8) to separate humic acid from fulvic acid. High performance size exclusion chromatography (HPSEC), equipped with an Ultraviolet( UV) detector and an Evaporative Light Scattering (ELS) detector connected in series, was used to obtain molecular weight distribution information and the concentration levels of the two acids. Mixed standards of polyethylene oxide/glycol were employed to calibrate the selected column. Suwanee River humic acid standard was used as a certified reference material. The molecular weight distributions (MWDs) of the isolated fractions of humic and fulvic acids were determined with ELSD detection as weight-average (Mw), number-average (Mn) and polydispersity (ρ) of individual NOM fractions. The Mw/Mn ratio was found to be less than 1.5 in all the fractions, indicating that they have a low and narrow size fraction. An increase in Mn and Mw values, with increasing wavelength for all three humic substances (HS) examined was observed. The HS, isolated from the dam water, was found to be about the same molecular weight as the International Humic Acid Standard (IIHSS). For the fulvic acid standard, the molecular weight was estimated to be around 7500 Da. Characterization of NOM was done to assist in the identification of the species present in the water. FTIR-ATR was used to as a characterization tool to identify the functional groups in the structure of the humic and fulvic acid respectively present in the Vaal Dam. Analysis of the infrared (IR) spectra indicated that the humic acids of the Vaal dam have phenolic hydroxyl groups, hydroxyl groups, conjugated double bond of aromatic family (C=C), and free carboxyl groups. The isolation method has proved to be applicable and reliable for dam water samples and showed to successfully separate the humic substances from water and further separate the humic substances into its hydrophobic acids, namely, humic and fulvic acids. It can be concluded that the Eskom Vaal dam composes of humic substance which shows that the technique alone gives a very good indication of the characteristics of water. The HPSEC method used, equipped with UV and ELSD was able to identify the molecular weight range of NOM present in source water as it confirmed that the Eskom Vaal dam contains humic substances as humic acid and fulvic acid and these pose a health concern as they can form disinfectant byproducts in the course of water treatment with chemicals. FTIR characterization was successful as important functional groups were clearly assigned. Lastly, the use of the TOC and DOC values to calculate SUVA was also a good tool to indicate the organic content in water. It is recommended to use larger amounts of water must be processed to obtain useful quantities of the humic and fulvic acid fractions.


2004 ◽  
Vol 50 (5) ◽  
pp. 277-283 ◽  
Author(s):  
R. Vinken ◽  
A. Höllrigl-Rosta ◽  
B. Schmidt ◽  
A. Schäffer ◽  
P.F.-X. Corvini

Humic substances are important environmental components since they represent a very large part of organic compounds on earth. According to many reports, dissolved humic substances are a determinant parameter for the bioavailability of xenobiotic compounds. For the present bioavailability studies, two kinds of dissolved humic substances, a commercially available humic acid and fulvic acids isolated from peat were used. As the relevant xenobiotic, a defined branched nonylphenol isomer, 4(3′,5′-dimethyl-3′-heptyl)-phenol (p353NP) was synthesised according to Friedel-Crafts alkylation. Equilibrium dialysis studies were implemented in order to investigate the association between 14C-labelled p353NP and dissolved humic substances. The biodegradability in the presence of dissolved humic substances was examined in experiments with the nonylphenol degrading bacterium strain Sphingomonas TTNP3 and with p353NP as sole carbon source. The results showed that p353NP-humic acid associates were formed in high amounts, whereas no adducts with fulvic acids occurred. In the degradation studies with Sphingomonas TTNP3, no effects of dissolved humic substances on the bioavailability of p353NP could be observed. It was assumed that the association between nonylphenol and humic acids occurs rapidly and is reversible. Thus, the formation of "labile" complexes did not influence biodegradation rates, which were quite low.


Proceedings ◽  
2019 ◽  
Vol 29 (1) ◽  
pp. 82
Author(s):  
Malina Desliu-Avram ◽  
Stefan-Ovidiu Dima ◽  
Anca-Andreea Turcanu ◽  
Elena Radu ◽  
Ana-Maria Stanciuc ◽  
...  

Humic substances (HS) are complex systems widely spread in nature as a result of the humification process of biomass, although hardly quantifiable and understood. Various polyphenols are considered to be the main precursors of HS. [...]


2004 ◽  
Vol 39 (3) ◽  
pp. 233-240 ◽  
Author(s):  
Luciano Pasqualoto Canellas ◽  
Arnoldo Rocha Façanha

The aim of this work was to evaluate the humus composition from an Ultisol from Campos dos Goytacazes, RJ, Brazil. Soil samples of four depths (0-0.05, 0.05-0.10, 0.10-0.20 and 0.20-0.40 m) and its chemical nature were analysed by elemental composition, E4/E6 ratios and Fourier transformed infrared spectroscopy. The bioactivity of these humified substances was evaluated through their action on maize root growth and H+-ATPase activity of roots microsomes. In topsoil, the content of high condensed alkaline soluble humic substances is greater than that found in the subsuperficial layers. The chemical nature of humic and fulvic acids also varied with the soil depth. The humic acids isolated from the soil samples exhibited higher bioactivity compared with the fulvic acids. Moreover, the results suggest that more condensed humic substances can promote highest stimulation of the microsomal H+-ATPases from maize roots. These data reinforce the concept that the activity of the H+ pumps can be used as a biochemical marker for evaluation of humic substances bioactivity.


1994 ◽  
Vol 123 (2) ◽  
pp. 247-252 ◽  
Author(s):  
D. Vaughan ◽  
B. G. Ord

SummaryFerrous iron is oxidized and precipitated as iron ochre in field drains. In drainage waters taken from an ochre-producing site near Aberdeen, Scotland in 1987, iron deposition was inhibited by the addition of humic and fulvic acids, which form complexes with Fe(II). The inhibition was dependent on the concentrations of soluble humic materials and the proportion of Fe complexed. Iron deposition in the presence of humic substances is discussed in relation to the amount of the cation which is complexed and its oxidation state.


Author(s):  
Maroš Sirotiak ◽  
Alica Bartošová

Abstract The paper deals with the process of thermal degradation of humic substances in soil samples exposed to increased temperature. To determine the basic properties of humic substances, humic and fulvic acids are used conventional fractionation chemical laboratory methods. To determine changes in the chemical structure, the method of use of FT-IR ATR spectroscopy technique.


Author(s):  
Resman ◽  
Sahta Ginting ◽  
Muhammad Tufaila ◽  
Fransiscus Suramas Rembon ◽  
Halim

The research aimed to determine the effectiveness of compost containing humic and fulvic acids, and pure humic and fulvic acids in increasing of Ultisol soil chemical properties. The research design used a randomized block design (RBD), consisting of 10 treatments, namely K0: 0 g polybag-1, KO1: 500 g polybag-1, KO2: 500 g polybag-1, KO3: 500 g polybag-1, KO4: 500 g polybag-1, KO5: 500 g polybag-1, KO6: 500 g polybag-1, KO7: 500 g of polybags-1, H: 50 g of polybag-1, A: 500 g polybag-1. Each treatment was repeated three times and obtained 30 treatment units. The results showed that pH H2O (K0: 4.49, KO1: 5.64, KO2: 5.47, KO3: 5.43, KO4: 5.51, KO5: 5.39, KO6: 5.48, KO7: 6.17, H: 5.06, F: 5.15), total-N (%) (K0: 0.13, KO1: 0.17, KO2: 0.18, KO3: 0.30, KO4: 0.25, KO5: 0.24, KO6: 0.29, KO7: 0.36, H: 0.16, F: 0.14), organic-C (%) (K0: 1.85, KO1; 2.30, KO2: 2.24, KO3: 2.33, KO4: 2.62, KO5: 2.25, KO6: 2.27, KO7: 2.95, H: 2.32, F: 2.26) , available-P (%) (K0: 2.75, KO1: 3.24, KO2: 3.16, KO3: 3.27, KO4: 3.57, KO5: 3.31, KO6: 3.37, KO7: 3.89, H: 3.10, F: 3.12), exchangeable-Al (me100g-1) (K0: 2.51, KO1: 2.11, KO2: 2.13, KO3: 2.15, KO4: 1.88, KO5: 2.14, KO6: 2.12, KO7: 1.75, H: 2.16, F: 2.17), base saturation (%) (K0: 30.91, KO1: 63.48, KO2: 52.63, KO3: 53.76, KO4: 56.13, KO5: 54.96, KO6: 56.71, KO7: 65.53, H: 39.11, F: 42.76), cation exchange capacity (me100g-1) (K0: 12.76, KO1: 15.64, KO2: 14.86, KO3: 14.35, KO4: 14.13, KO5: 15.01, KO6: 15.50, KO7: 17.94, H: 14.19, F: 13.73). The combined compost treatment of three types of organic matter (Imperata cylindrica + Rice straw + Glincidia sepium) is more effective in increasing the pH, H2O as 37.42%, total-N as 176.92%, Organic-C as 59.46%, available-P as 41.45%, base saturation as 65.53%, cation exchange capacity as 17.94% and exchangeable -Al, Alreduction as 30.28% of ultisol soil. KEY WORDS: compost, humic acid, fulvate, soil chemical, ultisol


2017 ◽  
Vol 36 (2) ◽  
pp. 128
Author(s):  
Roberto G. Choconi ◽  
Alberto A. Ghini ◽  
Victor H. Conzonno ◽  
Alicia Fernández Cirelli

Humic substances (HS) were isolated from the sediments of Lobos Pond (Argentina) using mild conditions to preserve their native structure. The HS (humic and fulvic acids) were characterized by means of elemental analysis and FTIR spectroscopy. Also a by-product obtained during fulvic acids (FA) fractionation (an amorphous white solid residue) was analyzed. Results revealed possible interactions between FA and inorganic-organic substances that may have implications referring to bioavailability. Other limnological implications, such as autochtonous origin of HS linked with the hydrology, and change of pH during stormy weather that affects HS interactions, are discussed.


Author(s):  
Martina Klučáková

Abstract Background Humic substances can be considered as polyelectrolytes with supramolecular character and complicated behaviour in water environment. The fractions of humic substances dissolved in water are the most active ones and determinative for their functioning in nature, where the proton-binding and dissociation ability play a crucial role. The dissociation behaviour of humic and fulvic acids can be affected by different circumstances including their concentration which is directly connected with the molecular organization of humic particles in solution and the accessibility of their ionizable functional groups. This study is focused just on these active fractions and their dissociation behaviour in the dependence on their content in studied system. Results Standards and reference samples of International Humic Substances Society were used. Flow-through coulometry was used to determine the total content of acidic functional groups in fulvic solutions and humic leachates. The amount of dissociated acidic groups was determined on the basis of potentiometry. Several differences between the behaviour of humic and fulvic acids were found. While whole samples of fulvic acids including the weakest functional groups were analysed, only the active dissolved humic fractions containing stronger acidic functional groups were characterized. The fractions containing higher amounts of the weakest functional groups remained insoluble. The dissociation degree of fulvic acids decreased with their increasing content, but a maximum on its concentration dependence obtained for humic acids was observed. Conclusions Two different values of dissociation constants were determined for each sample. The first was determined on the basis of the extrapolation of infinite dilution, second was determined as their average value in the region of high concentrations in which it was constant. Obtained values characterize the functioning of dissolved humic substances from point of view of their dissociation ability. The results obtained by this approach can help to predict the acid–base behaviour of dissolved organic carbon in soil and generally in nature. The acid–base behaviour of dissolved organic carbon depends on its ratio to water. It behaves differently in soil which is dry and in soil which is wet or saturated by water.


Author(s):  
Jerry A. Leenheer ◽  
T. I. Noyes

Fourier Transform nuclear magnetic resonance (NMR) spectrometers have become available to many researchers studying humic substances over the last decade. As a result, liquid-state proton (1H) NMR spectrometry has been commonly used to determine the nonexchangeable proton distribution in humic and fulvic acids. The high sensitivity of the 1H nucleus to NMR spectrometry allows spectra to be obtained on a relatively small quantity of sample (10-100 mg) in a short time (10-30 min). 1H NMR spectrometric profiles of humic substances are useful to environmental scientists in determining the source, properties, and degree of transformation (humification) of organic matter that is operationally classified as humic substances. These 1H NMR spectrometric profiles, which provide information about hydrogen distributions in humic substances, are more useful for structural and biogeochemical studies when combined with 13C NMR spectra, which provide information on carbon distributions, and infrared spectra, which provide information on oxygen distributions. These three spectra, in conjunction with elemental composition, molecular weight, and titrimetric data, can then be synthesized to provide average structural characteristics that can be related to source, properties, and degree of humification of the organic material being studied. Special challenges, that are not met when obtaining the spectra of pure compounds, are encountered in obtaining 'H NMR spectra of natural humic substances. These challenges include (1) lack of complete dissolution of macromolecular humic substances at the high concentrations required for NMR studies; (2) significant concentrations of exchangeable protons giving broad peaks that obscure portions of the spectrum; (3) broad peaks of non-exchangeable protons over the entire spectrum that cause difficulties in correct phasing; (4) unstable structures that oxidize, hydrolyze, and structurally rearrange at the high pH conditions under which humic substances are the most soluble; and (5) the presence of unusual structures that complicate straightforward assignment of structure from handbook data. The purposes of this chapter are to describe methods of sample preparation and to provide generally applicable structural assignments whereby 1H NMR spectra suitable for quantitative studies of humic substance structure may be obtained and interpreted.


Sign in / Sign up

Export Citation Format

Share Document