In vitro evaluation of the effect of nicotine, cotinine, and caffeine on oral microorganisms

2008 ◽  
Vol 54 (6) ◽  
pp. 501-508 ◽  
Author(s):  
Karina Cogo ◽  
Michelle Franz Montan ◽  
Cristiane de Cássia Bergamaschi ◽  
Eduardo D. Andrade ◽  
Pedro Luiz Rosalen ◽  
...  

The aim of this in vitro study was to evaluate the effects of nicotine, cotinine, and caffeine on the viability of some oral bacterial species. It also evaluated the ability of these bacteria to metabolize those substances. Single-species biofilms of Streptococcus gordonii , Porphyromonas gingivalis , or Fusobacterium nucleatum and dual-species biofilms of S. gordonii – F. nucleatum and F. nucleatum – P. gingivalis were grown on hydroxyapatite discs. Seven species were studied as planktonic cells, including Streptococcus oralis , Streptococcus mitis , Propionibacterium acnes , Actinomyces naeslundii , and the species mentioned above. The viability of planktonic cells and biofilms was analyzed by susceptibility tests and time-kill assays, respectively, against different concentrations of nicotine, cotinine, and caffeine. High-performance liquid chromatography was performed to quantify nicotine, cotinine, and caffeine concentrations in the culture media after the assays. Susceptibility tests and viability assays showed that nicotine, cotinine, and caffeine cannot reduce or stimulate bacterial growth. High-performance liquid chromatography results showed that nicotine, cotinine, and caffeine concentrations were not altered after bacteria exposure. These findings indicate that nicotine, cotinine, and caffeine, in the concentrations used, cannot affect significantly the growth of these oral bacterial strains. Moreover, these species do not seem to metabolize these substances.

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4395
Author(s):  
Krishnamachari Janani ◽  
Kavalipurapu Venkata Teja ◽  
Raghu Sandhya ◽  
Mohammad Khursheed Alam ◽  
Ruba K. Al-Qaisi ◽  
...  

Esthetics, improved colour stability and ease of contour have made photo-activated resin based restorative materials being widely used in routine dental clinical practice. Perhaps improper and inadequate polymerization of resin based composite material might lead to elution of monomer. Thus, the aim of the current study was to quantify the monomer elution from three resin composites. The intended analysis was made using high performance liquid chromatography (HPLC) at two different time periods. Three different materials that were investigated in the current study included Swiss Tech resin composite (Group A), Ceram X (Group B) and Beautifil Injectable composite (Group C). Ten cylindrical samples were fabricated in each study group. In 75% wt of ethanol, the samples were ingressed immediately and stored at room temperature. A 0.5 mL of the samples was assessed at pre-defined time intervals at 24 h and 7th day. Later, assessment of the samples was performed with HPLC and the data was analyzed using statistical test. Bisphenol A-glycidyl methacrylate (Bis-GMA), Triethylene glycol dimethacrylate (TEGDMA), 2-hydroxyethyl methacrylate (HEMA) and Urethane dimethacrylate (UDMA) were quantified in the samples. When analyzing the release monomer, it was found that at the end of 24 h Bis-GMA was eluted more in the injectable resin composite whereas, TEGDMA was eluted from Swiss Tech and Ceram X resin composites. At the end of the 7th day it was evident that Bis-GMA was eluted maximum in all the three resin composites. Thus, monomer release was found to be evident among all three resin composites and it is of utmost important to be assessed in routine clinical practice.


Author(s):  
Mariola Dreger ◽  
Katarzyna Seidler-Łożykowska ◽  
Milena Szalata ◽  
Artur Adamczak ◽  
Karolina Wielgus

AbstractThe purpose of the study was to evaluate Chamerion angustifolium (L.) Holub genotypes for preliminary selection and further breeding programs aimed at obtaining a suitable industrial form for the pharmaceutical applications. Clonally propagated plants representing 10 genotypes of Ch. angustifolium were regenerated under in vitro conditions, hardened and planted in the field. Studies included an evaluation of shoot proliferation, phytochemical assessment of in vitro and ex vitro plants as well as investigations of intraspecies variability regarding four phenological stages: vegetative, beginning of blooming, full blooming, and green fruit phases. Quantitative and qualitative analyses of bioactive compounds were performed using high-performance liquid chromatography coupled with diode array detector and tandem mass spectrometer (HPLC–DAD–MS/MS) and high-performance liquid chromatography (HPLC) methods. The efficiency of shoot multiplication varied between genotypes from 8.12 to 21.48 shoots per explant. A high reproduction rate (> 20 shoots per explant) was recorded for four lines (PL_45, PL_44, PL_58, DE_2). Plants grown in vitro synthesized oenothein B (11.2–22.3 mg g−1 DW) and caffeic acid derivatives. Plants harvested from field contained the full spectrum of polyphenols characteristic for this species, and oenothein B and quercetin 3-O-glucuronide were the most abundant. The maximal content of oenothein B was determined in the vegetative phase of fireweed, while some flavonoids were found in the highest amount in full blooming phase. The results of analysis of variance indicated significant differences among genotypes in oenothein B, 3-O-caffeoylquinic acid and flavonoids accumulation in four phenological phases. PL_44 plants were characterized by high content of oenothein B and quercetin 3-O-glucuronide as well as a relatively high level of other flavonoids. Based on our phytochemical and micropropagation studies, PL_44 genotype was the best candidate for early selection and further breeding programs.


2008 ◽  
Vol 74 (6) ◽  
pp. 524-529
Author(s):  
Peter E. Fischer ◽  
Timothy C. Fabian ◽  
Waldemar G. Derijk ◽  
Norma M. Edwards ◽  
Michael Decuypere ◽  
...  

Vascular reconstruction using prosthetic materials in contaminated fields can lead to infection, graft loss, and subsequent amputation. We hypothesized that minocycline and rifampin bound to an ePTFE graft using a unique methacrylate technology would provide for resistance from infection and controlled antibiotic elution. Kirby Bauer susceptibility testing was performed on plates overlaid with Staph aureus (SA) and Staph epidermidis (SE) using 6 mm diameter discs of uncoated graft or antibiotic coated graft (ABX). Zones of inhibition (ZIH) were determined after 24 hours. ABX grafts were then placed in a continuous water bath and a recirculating, pulsatile flow device. Susceptibility testing and high performance liquid chromatography with mass spectroscopy was performed to determine graft performance and antibiotic elution rate. ABX grafts had an average ZIH of 35 mm for SA and 44 mm for SE (each P < 0.0001). After the 1 week water bath, the ZIH of the ABX grafts was 23 mm on both the SA and SE plates. The high performance liquid chromatography with mass spectroscopy revealed that after 24 hours, 50 per cent of the antibiotics remained on the graft, and there was a sustained elution for 7 days. Minocycline and rifampin can be bound to ePTFE vascular grafts using a unique methacrylate method. In vitro, the grafts provide a slow elution of antibiotics that provide resistance from infection by SA and SE for up to 2 weeks after graft insertion.


Sign in / Sign up

Export Citation Format

Share Document