Detection ofBacillus sphaericusmosquitocidal toxin genes by multiplex colony PCR

2009 ◽  
Vol 55 (2) ◽  
pp. 207-209 ◽  
Author(s):  
Santosh C. Jagtap ◽  
Chandrakant B. Jagtap ◽  
Pradeep Kumar ◽  
R. B. Srivastava

A multiplex colony PCR assay was developed for the detection of 5 genes encoding Bacillus sphaericus mosquito larvicidal toxins, namely binA, binB, mtx1, mtx2, and mtx3. Primers designed for these 5 genes yielded specific PCR amplicons of the expected size from type cultures of B. sphaericus. This method of detecting multiple toxin genes by colony PCR in a single tube reaction is a simple, rapid, and economical technique for identification of highly toxic environmental B. sphaericus isolates.

2000 ◽  
Vol 66 (10) ◽  
pp. 4571-4574 ◽  
Author(s):  
Anne E. Bernhard ◽  
Katharine G. Field

ABSTRACT Our purpose was to develop a rapid, inexpensive method of diagnosing the source of fecal pollution in water. In previous research, we identified Bacteroides-Prevotella ribosomal DNA (rDNA) PCR markers based on analysis. These markers length heterogeneity PCR and terminal restriction fragment length polymorphism distinguish cow from human feces. Here, we recovered 16S rDNA clones from natural waters that were close phylogenetic relatives of the markers. From the sequence data, we designed specific PCR primers that discriminate human and ruminant sources of fecal contamination.


2008 ◽  
Vol 75 (4) ◽  
pp. 1044-1049 ◽  
Author(s):  
Karlos Diogo de Melo Chalegre ◽  
Tatiany Patr�cia Rom�o ◽  
Liliane Barbosa Amorim ◽  
Daniela Bandeira Anastacio ◽  
Rosineide Arruda de Barros ◽  
...  

ABSTRACT The activity of the Bacillus sphaericus binary (Bin) toxin on Culex quinquefasciatus larvae depends on its specific binding to the Cqm1 receptor, a midgut membrane-bound α-glucosidase. A 19-nucleotide deletion in the cqm1 gene (cqm1 REC ) mediates high-level resistance to Bin toxin. Here, resistance in nontreated and B. sphaericus-treated field populations of C. quinquefasciatus was assessed through bioassays as well as a specific PCR assay designed to detect the cqm1 REC allele in individual larvae. Resistance ratios at 90% lethal concentration, gathered through bioassays, were close to 1 and indicate that the selected populations had similar levels of susceptibility to B. sphaericus, comparable to that of a laboratory colony. A diagnostic PCR assay detected the cqm1 REC allele in all populations investigated, and its frequency in two nontreated areas was 0.006 and 0.003, while the frequency in the B. sphaericus-treated population was significantly higher. Values of 0.053 and 0.055 were detected for two distinct sets of samples, and homozygote resistant larvae were found. Evaluation of Cqm1 expression in individual larvae through α-glucosidase assays corroborated the allelic frequency revealed by PCR. The data from this study indicate that the cqm1 REC allele was present at a detectable frequency in nontreated populations, while the higher frequency in samples from the treated area is, perhaps, correlated with the exposure to B. sphaericus. This is the first report of the molecular detection of a biolarvicide resistance allele in mosquito populations, and it confirms that the PCR-based approach is suitable to track such alleles in target populations.


2003 ◽  
Vol 69 (12) ◽  
pp. 7430-7434 ◽  
Author(s):  
Trevor G. Phister ◽  
David A. Mills

ABSTRACT Traditional methods to detect the spoilage yeast Dekkera bruxellensis from wine involve lengthy enrichments. To overcome this difficulty, we developed a quantitative real-time PCR method to directly detect and enumerate D. bruxellensis in wine. Specific PCR primers to D. bruxellensis were designed to the 26S rRNA gene, and nontarget yeast and bacteria common to the winery environment were not amplified. The assay was linear over a range of cell concentrations (6 log units) and could detect as little as 1 cell per ml in wine. The addition of large amounts of nontarget yeasts did not impact the efficiency of the assay. This method will be helpful to identify possible routes of D. bruxellensis infection in winery environments. Moreover, the time involved in performing the assay (3 h) should enable winemakers to more quickly make wine processing decisions in order to reduce the threat of spoilage by D. bruxellensis.


2008 ◽  
Vol 75 (3) ◽  
pp. 862-865 ◽  
Author(s):  
Jeremy J. Gilbreath ◽  
Malcolm S. Shields ◽  
Rebekah L. Smith ◽  
Larry D. Farrell ◽  
Peter P. Sheridan ◽  
...  

ABSTRACT Cattle are a known reservoir of Shiga toxin-producing Escherichia coli. The prevalence and stability of Shiga toxin and/or Shiga toxin genes among native wild ungulates in Idaho were investigated. The frequency of both Shiga genes and toxin was similar to that reported for Idaho cattle (∼19%).


2007 ◽  
Vol 376 (1-2) ◽  
pp. 155-162 ◽  
Author(s):  
Antonio Casado-Díaz ◽  
Rafael Cuenca-Acevedo ◽  
José Manuel Quesada ◽  
Gabriel Dorado

2003 ◽  
Vol 154 (8) ◽  
pp. 587-592 ◽  
Author(s):  
Gennadiy Kovtunovych ◽  
Tetyana Lytvynenko ◽  
Valentyna Negrutska ◽  
Olena Lar ◽  
Sylvain Brisse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document