colony pcr
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 45)

H-INDEX

15
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Ken Christensen

SapphireAmp Fast PCR Master Mix contains a hot start PCR enzyme, optimized buffer, dNTP mixture, gel loading dye (blue), and a density reagent as a 2X premix. SapphireAmp Fast PCR Master Mix is optimized for fast PCR and offers a rapid extension rate (10 sec. per kb). The inclusion of blue dye and a density reagent allows direct loading of PCR products on an agarose gel for electrophoresis. The master mix format simplifies workflows and sample handling; simply add primers, template, and water and then begin PCR. SapphireAmp Fast PCR Master Mix is ideal for fast colony PCR screening. Fast colony PCR amplification of a 5 kb insert can be completed in approximately 1 hr 15 min. Furthermore, it is possible to amplify fragments up to 6 kb from genomic DNA templates.


2021 ◽  
Vol 31 (1) ◽  
pp. 51
Author(s):  
Erniawati Diningsih

<p>Carnation mottle virus (CarMV) termasuk anggota genus Carmovirus dalam famili Tombusviridae. Virus ini banyak ditemukan menginfeksi tanaman anyelir di Jawa Barat dan menyebabkan gejala mottle. Sebagai langkah awal untuk memproduksi antiserum melalui teknik ekspresi gen CP perlu diklon pada vektor yang sesuai. Penelitian ini bertujuan mendapatkan klon CarMV yang berfungsi melalui kloning dan subkloning gen CP CarMV ke dalam vektor ekspresi yang sesuai. Penelitian dilakukan dalam beberapa tahap, yaitu ekstraksi RNA total dan amplifikasi cDNA CarMV dengan RT-PCR, menggunakan primer spesifik CarMVF dan CarMVR yang mengandung situs enzim restriksi XhoI dan BamHI, kloning dan subkloning DNA sisipan, serta konfirmasi transforman. Rekombinan gen sisipan CP CarMV dalam bakteri dikonfirmasi dengan koloni PCR. Gen CP CarMV berhasil dikloning ke dalam TA vektor pTZ57R/T dan disubkloning ke vektor ekspresi pET28a. Sekuen rekombinan CP CarMV berhasil dikonfirmasi melalui perunutan DNA. Penelitian lebih lanjut diperlukan untuk mendapatkan produksi antigen rekombinan yang melimpah pada bakteri ekspresi dan kondisi yang sesuai.</p><p><strong>Keywords</strong></p><p>Dianthus caryophillus L.; Carmovirus; Kloning; Subkloning; Bakteri ekspresi</p><p><strong>Abstract</strong></p><p>Carnation mottle virus (CarMV) is a type member of Carmovirus genus in family of Tombusvirus. The virus infects carnation plants in the centre area production of West Java and it cause mottle symptoms. The research aimed to obtain functional clone(s) of CarMV CP gene in suitable expression kloning vector. The research was carried out through several steps, namely total RNA extraction and amplification of cDNA of CP CarMV by RT-PCR using specific primer pairs CarMVF and CarMVR containing restriction enzyme sites XhoI and BamHI, respectively, TA cloning, and subcloning into expression vector pET28a and confirmation of recombinant plasmids by colony PCR. CarMV CP gen was successfully cloned into TA cloning vector pTZ57R/T and subcloned into vector pET28a, alsowere confirmed by DNA sequencing. Future experiment is necessary to be conducted to obtain abundance recombinant antigen production of CarMV CP in suitable expression condition and bacterial host.</p>


2021 ◽  
Vol 22 (22) ◽  
pp. 12543
Author(s):  
Barkha Binyameen ◽  
Zulqurnain Khan ◽  
Sultan Habibullah Khan ◽  
Aftab Ahmad ◽  
Nayla Munawar ◽  
...  

In recent decades, Pakistan has suffered a decline in cotton production due to several factors, including insect pests, cotton leaf curl disease (CLCuD), and multiple abiotic stresses. CLCuD is a highly damaging plant disease that seriously limits cotton production in Pakistan. Recently, genome editing through CRISPR/Cas9 has revolutionized plant biology, especially to develop immunity in plants against viral diseases. Here we demonstrate multiplex CRISPR/Cas-mediated genome editing against CLCuD using transient transformation in N. benthamiana plants and cotton seedlings. The genomic sequences of cotton leaf curl viruses (CLCuVs) were obtained from NCBI and the guide RNA (gRNA) were designed to target three regions in the viral genome using CRISPR MultiTargeter. The gRNAs were cloned in pHSE401/pKSE401 containing Cas9 and confirmed through colony PCR, restriction analysis, and sequencing. Confirmed constructs were moved into Agrobacterium and subsequently used for transformation. Agroinfilteration in N. benthamiana revealed delayed symptoms (3–5 days) with improved resistance against CLCuD. In addition, viral titer was also low (20–40%) in infected plants co-infiltrated with Cas9-gRNA, compared to control plants (infected with virus only). Similar results were obtained in cotton seedlings. The results of transient expression in N. benthamiana and cotton seedlings demonstrate the potential of multiplex CRISPR/Cas to develop resistance against CLCuD. Five transgenic plants developed from three experiments showed resistance (60−70%) to CLCuV, out of which two were selected best during evaluation and screening. The technology will help breeding CLCuD-resistant cotton varieties for sustainable cotton production.


Author(s):  
Sumeyra Kaymaz ◽  
Ali Ergenç ◽  
Ali Aytekin ◽  
Stuart Lucas ◽  
Meltem Elitas

Transition of rapid, ready-to-use, and low-cost nucleic acid-based detection technologies from laboratories to points of sample collection has drastically accelerated. However, most of these approaches are still incapable of diagnosis starting from sampling, through nucleic acid isolation and detection in the field. Here, we developed a simple, portable, low-cost, colorimetric, and remotely controllable platform for reliable, high-throughput, and rapid diagnosis using loop mediated isothermal amplification (LAMP) assays. It consists of a thermally isolated cup, low-cost electronic components, a polydimethylsiloxane sample well, and a fast prototyped case that covers electronic components. The steady-state temperature error of the system is less than 1%. We performed LAMP, Colony-LAMP, and Colony PCR reactions using the yaiO2 primer set for Escherichia coli and Pseudomonas aeruginosa samples at 65˚C and 30 min. We detected the end-point colorimetric readouts by the naked eye under day light. We confirmed the specificity and sensitivity of our approach using pure genomic DNA and crude bacterial colonies. We benchmarked our Colony-LAMP detection against Colony PCR. The number of samples tested can easily be modified for higher throughput in our system. We strongly believe that our platform can greatly contribute rapid and reliable diagnosis in versatile operational environments.


Author(s):  
Somayeh Shokri ◽  
Shahab Mahmoudvand ◽  
Manoochehr Makvandi ◽  
Reza Taherkhani ◽  
Mohammad Rashno ◽  
...  

  More than 99% of cervical cancers are associated with human papillomaviruses (HPVs) worldwide. Current HPV vaccines are safe, highly immunogenic, with effective immunity against specific HPV types. However, DNA vaccines are a new appealing platform which can be considered for designing the HPV vaccines. This study aimed to construct a recombinant eukaryotic expression plasmid containing L1 of HPV-18, tissue plasminogen activators (tPA), and pan HLA DR-binding epitope (PADRE) genes into the pVAX1 vector. The L1, tPA, and PADRE genes were amplified in a thermocycler. The polymerase chain reaction (PCR) products were cloned and insertion of the genes was confirmed using colony PCR, restriction enzymes analysis, and sequencing methods. Indirect immunofluorescence, RT-PCR, and western blot assays were applied to identify the target gene in HEK-293 cells. Total IgG and its isotypes in immunized mice were measured by enzyme-linked immunosorbent assay technique. Western blot analysis showed a protein band of about 67.5 kDa in supernatant and cell lysate of transfected cells. The results of mice immunization with different constructs (group 1: the pVAX-L1, group 2: pVAX-tPA-PADRE-L1, group 3: pVAX1, and group 4: PBS as controls) indicated that the pVAX1-tPA-PADRE-L1 construct induced a significantly higher level of total IgG than pVAX1-L1 (p=0.003). In conclusion, pVAX1-tPA-PADRE-L1 recombinant plasmid is a highly immunogenic construct and suggests as a promising candidate for vaccine development against HPV type 18 in low-middle-income countries.  


2021 ◽  
Vol 9 (08) ◽  
pp. 37-43
Author(s):  
Sakshi Narayan

The principal of cdna strand was that it was combined from complete rna utilizing an oligo(dt)- containing preliminary. After oligo(dg) following the absolute cdna was enhanced by pcr utilizing two groundworks correlative to oligo(da) and oligo(dg) closures of the cdna beginning from 10 j558lμm3 myeloma cells, absolute cdna was incorporated and intensified roughly 10 5 overlay. A library containing 10 6 clones was set up from 1/6 of the enhanced cdna. Screening of the library with tests for three qualities communicated in these cells uncovered various comparing clones for each situation. The longest acquired clones contained supplements of 1. 5kb length. No arrangements starting from transporters or from rrna was found in 14 haphazardly picked clones.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ping Xie ◽  
Fei Teng Zhong ◽  
Yue Lian Liu

Rhapis humilis Blume is an ornamental plant for landscaping that is widely distributed in China. In February 2020, a leaf spot disease was observed on R. humilis in a nursery shed in Zhanjiang (21.17 N, 110.18 E), Guangdong, China. The disease incidence was more than 90%. The early symptom was small water-soaked lesions, which then turned into black necrotic spots. Eventually, the individual lesions coalesced into larger ones, leading to the death of diseased leaves. Ten diseased leaves were collected from the nursery. The diseased tissues were cut into 2 × 2 mm pieces, surface disinfected with 75% ethanol for 30 s and 2% sodium hypochlorite for 60 s, and then rinsed three times with sterile water before pathogen isolation. The tissues were plated on potato dextrose agar (PDA) medium and incubated at 28°C in the dark for 4 days. Pure cultures were produced by transferring hyphal tips to new PDA plates. Three isolates (RHPH-1, RHPH-2, and RHPH-3) were obtained. The colonies of the isolates were approximately 5 cm in diameter after 7 days. They were initially whitish and later became grayish white. The NaOH testing on MEA cultures was negative. No sporulation was detected after 30 days. The fertile structures of the specimens collected in the nursery were examined. Pycnidia were globose, measured 68 to 265 × 72 to 360 µm (n = 20), and mostly embedded. Conidia were aseptate, hyaline, and ellipsoid, measuring 3.6 to 6.5 × 2.2 to 2.7 µm (n = 30). Based on the morphological characteristics, the fungus was identified as in genus Phoma (Boerema et al. 2004). For molecular identification, the colony PCR method with MightyAmp DNA Polymerase (Takara-Bio, Dalian, China) (Lu et al. 2012) was used to amplify the internal transcribed spacer (ITS), partial RNA polymerase II largest subunit (RPB2), and beta-tubulin (β-tub) loci of three isolates using primer pairs ITS4/ITS5, RPB2-6F/RPB2-7R, and BT2a/BT2b, respectively (Chen et al, 2015; White et al, 1990). The sequences were deposited in GenBank (ITS, MZ419364-MZ419366; RPB2, MZ562293-MZ562295; and β-tub, MZ562296-MZ562298). Based on BLAST analysis, the sequences of the ITS, RPB2, and β-tub all showed 100% similarity to Phoma herbarum Westend. (CBS 377.92, accession nos. KT389536 for ITS; KT389663 for RPB2; and KT389837 for β-tub). Pathogenicity testing was performed in a greenhouse with 80% relative humidity at 25 to 30°C. Ten healthy plants of R. humilis were grown in pots, with one plant in each pot. The leaves were pinpricked with sterile needles before inoculation. They were inoculated with mycelial plugs of the isolates or sterile agar plugs (as control), with four plugs for each leaf. Five plants were used in each treatment. Disease symptoms similar to those in the nursery were observed on the inoculated plants 2 weeks after inoculation, whereas the control plants remained healthy. The fungus was reisolated from the symptomatic leaves and confirmed as P. herbarum by morphology and ITS analysis. P. herbarum was reported to cause leaf spot on Atractylodes lancea, Camellia sinensis, Elaeis guineensis, Lilium brownii, and Vetiveria zizanioides in China; Bituminaria bituminosa, Glycine max, Medicago sativa, and Pisum sativum in Australia; and Salvia nemorosa in Italy (Li et al. 2011; Li et al. 2012; Thangaraj et al. 2018). To our knowledge, the present study was the first to report P. herbarum causing leaf spot on R. humilis in China. P. herbarum seriously affects the supply of seedlings in R. humilis, and its epidemiology on R. humilis should be further studied.


2021 ◽  
Author(s):  
Matthew D. R. Cadorin

In most eukaryotes, the largest subunit of RNAPII, Rpb1, contains a conserved carboxyterminal domain (CTD) containing a canonical structure of heptapeptide repeats. Two protein complexes of interest, Mediator and Integrator, are known to interact with this CTD in all eukaryotic models they have been described in to date. Recently, orthologs of Mediator and Integrator subunits have been identified within the ciliated protozoan Tetrahymena thermophila; one of the few eukaryotic lineages to lack a canonically organized CTD. To begin to characterize putative Mediator and Integrator complexes within T. thermophila, I engineered appropriate macronuclear tagging and knockout cassettes. Although the Tetrahymena MED31 ortholog was unable to rescue the slow growth phenotype of a yeast MED31 knockout, or co-purify with yeast Med8-TAP, I identified subunit Med3 as a member of the Med31 interactome in T. thermophila through tandem affinity purification coupled with mass spectrometry. I also targeted the Tetrahymena INTS6 locus for knockout as determined by colony PCR. If Mediator and Integrator exist in Tetrahymena despite its divergent CTD of Rpb1, perhaps these complexes have CTD-independent functions beyond what can be effectively studied using conventional model systems.


2021 ◽  
Author(s):  
Matthew D. R. Cadorin

In most eukaryotes, the largest subunit of RNAPII, Rpb1, contains a conserved carboxyterminal domain (CTD) containing a canonical structure of heptapeptide repeats. Two protein complexes of interest, Mediator and Integrator, are known to interact with this CTD in all eukaryotic models they have been described in to date. Recently, orthologs of Mediator and Integrator subunits have been identified within the ciliated protozoan Tetrahymena thermophila; one of the few eukaryotic lineages to lack a canonically organized CTD. To begin to characterize putative Mediator and Integrator complexes within T. thermophila, I engineered appropriate macronuclear tagging and knockout cassettes. Although the Tetrahymena MED31 ortholog was unable to rescue the slow growth phenotype of a yeast MED31 knockout, or co-purify with yeast Med8-TAP, I identified subunit Med3 as a member of the Med31 interactome in T. thermophila through tandem affinity purification coupled with mass spectrometry. I also targeted the Tetrahymena INTS6 locus for knockout as determined by colony PCR. If Mediator and Integrator exist in Tetrahymena despite its divergent CTD of Rpb1, perhaps these complexes have CTD-independent functions beyond what can be effectively studied using conventional model systems.


Sign in / Sign up

Export Citation Format

Share Document