Effects of leaching on fungal growth and decay of western redcedar

2009 ◽  
Vol 55 (5) ◽  
pp. 578-586 ◽  
Author(s):  
Russell J. Chedgy ◽  
Young Woon Lim ◽  
Colette Breuil

We tested the effect of leaching on the concentration of western redcedar (WRC; Thuja plicata Donn ex D. Don) heartwood extractives that are known to exhibit antimicrobial activity and correlated this with fungal growth and decay. We assessed the extractive tolerance of the following fungal species: Acanthophysium lividocaeruleum , Coniophora puteana , Heterobasidion annosum , Pachnocybe ferruginea , Phellinus sulphurascens , and Phellinus weirii by measuring their growth rate (mm/day) on media with or without WRC leachate. These data were correlated with the ability of the fungal species to grow on and decay leached versus nonleached WRC. We used an ergosterol assay to estimate growth and a standard soil-block test to assess decay. We estimated that leaching reduced the concentration of 5 major extractives: (–)-plicatic acid, β-thujaplicin, γ-thujaplicin, β-thujaplicinol, and thujic acid by ~80%. Phellinus sulphurascens exhibited the lowest extractive-tolerance in vitro, grew poorly on and caused minimal decay in nonleached WRC, but it grew well on and decayed pine and leached WRC. Coniophora puteana, H. annosum, and P. weirii displayed moderate to high tolerance to leachate, grew on and caused decay in nonleached as well as leached WRC, but their growth and decay were always greatest on leached WRC and pine, suggesting that leaching enhances decay by these fungi. Acanthophysium lividocaeruleum and Pachnocybe ferruginea exhibited high extractive-tolerance. Whereas A. lividocaeruleum clearly caused decay on all types of wood, no decay was observed with Pachnocybe ferruginea, which grew very slowly in the different wood species, and it may or may not be able to decay wood.


1977 ◽  
Vol 138 (3) ◽  
pp. 298-304 ◽  
Author(s):  
Warren K. Coleman ◽  
Trevor A. Thorpe


2020 ◽  
Vol 8 (1) ◽  
pp. 69 ◽  
Author(s):  
Marco Camardo Leggieri ◽  
Amedeo Pietri ◽  
Paola Battilani

No information is available in the literature about the influence of temperature (T) on Penicillium and Aspergillus spp. growth and mycotoxin production on cheese rinds. The aim of this work was to: (i) study fungal ecology on cheese in terms of T requirements, focusing on the partitioning of mycotoxins between the rind and mycelium; and (ii) validate predictive models previously developed by in vitro trials. Grana cheese rind blocks were inoculated with A. versicolor, P. crustosum, P. nordicum, P. roqueforti, and P. verrucosum, incubated at different T regimes (10–30 °C, step 5 °C) and after 14 days the production of mycotoxins (ochratoxin A (OTA); sterigmatocystin (STC); roquefortine C (ROQ-C), mycophenolic acid (MPA), Pr toxin (PR-Tox), citrinin (CIT), cyclopiazonic acid (CPA)) was quantified. All the fungi grew optimally around 15–25 °C and produced the expected mycotoxins (except MPA, Pr-Tox, and CIT). The majority of the mycotoxins produced remained in the mycelium (~90%) in three out of five fungal species (P. crustosum, P. nordicum, and P. roqueforti); the opposite occurred for A. versicolor and P. verrucosum with 71% and 58% of STC and OTA detected in cheese rind, respectively. Available predictive models fitted fungal growth on the cheese rind well, but validation was not possible for mycotoxins because they were produced in a very narrow T range.



Author(s):  
Kevison Romulo da Silva França ◽  
Flavia Mota de Figueredo Alves ◽  
Tiago Silva Lima ◽  
Alda Leaby dos Santos Xavier ◽  
Plínio Tércio Medeiros de Azevedo ◽  
...  

This study evaluates the in vitro effects of Lippia gracilis essential oil on the mycelial growth of phytopathogenic fungi. Experiments were carried out using a completely randomized design to assess the effects of eight treatments. Five replicates were evaluated for each experimental group. The essential oil was incorporated into the potato dextrose culture medium and poured into Petri dishes. Treatments were comprised of different concentrations of the oil (0.0125, 0.025, 0.05, 0.1, and 0.2%), a negative control (0.0%), and two positive controls (commercial fungicides). The plates were inoculated with fungi including Colletotrichum gloeosporioides, C. musae, C. fructicola, C. asianum, Alternaria alternata, A. brassicicola, Fusarium solani, F. oxysporum f. sp. cubense, and Lasiodiplodia theobromae and were incubated for seven days at 27 ± 2°C. The following variables were measured to verify the differences observed among treatments: percentage of mycelial growth inhibition and index of mycelial growth speed. All concentrations of L. gracilis oil inhibited the mycelial growth of the fungal species evaluated. The complete inhibition was observed between concentrations of 0.0125 and 0.1%. Treatment with oil inhibited fungal growth with similar, or even greater, efficiency than commercial fungicides.. We recommend the development of in vivo tests to verify whether L. gracilis essential oil can protect against fungal disease in live plants.



2007 ◽  
Vol 22 (4) ◽  
pp. 297-306
Author(s):  
J.H. Russell ◽  
O. Hak

Abstract Western redcedar (Thuja plicata Donn) foliar-applied gibberellin A3 (GA3) induction trials were performed over a 4-year period at a number of different seed orchards in coastal British Columbia. The effects of GA3 timing, concentration, and frequency on male and female strobilus production, as well as timing on seed quality, were studied. Male and female strobili were induced over the complete span of shoot elongation from May to August, indicative of a less-precise induction period than species in the Pinaceae family. Female strobilus production was correlated with shoot increment, such that maximum cone production was associated with maximum shoot elongation. In addition, seed quality decreased with decreasing shoot increments in August. For operational efficiency, a one-time foliar application of 200 mg/l GA3 is sufficient for adequate female strobilus production. To increase the female-to-male strobilus ratio, a two-time foliar application of GA3 mid-May and mid-July, concentrating on vigorous shoots, is recommended. Results are discussed in relation to seed orchard management techniques that may potentially influence selfing rates.



2010 ◽  
Vol 56 (2) ◽  
pp. 138-144 ◽  
Author(s):  
Joey B. Tanney ◽  
Leonard J. Hutchison

Glyphosate-based herbicides are used extensively in forestry and agriculture to control broadleaf plant competition. A review of the literature offers conflicting results regarding the impact of glyphosate on fungal growth. This study investigated the effects of 7 glyphosate concentrations (1, 2, 5, 10, 50, 100, and 1000 µg·mL–1) of Roundup (35.6% glyphosate) on the number of colony-forming units (CFUs) of soilborne microfungi from a boreal forest soil sample and on the in vitro linear growth of 20 selected species of microfungi representative of this boreal forest soil. Concentrations of glyphosate at 50 µg·mL–1and higher significantly decreased the number of CFUs observed. At glyphosate concentrations equal to 5 µg·mL–1, 13 fungal species exhibited colony diameters less than 50% than that of their respective controls. Several species showed an inhibition of pigmentation and sporulation when subjected to glyphosate concentrations of 1 µg·mL–1. Differential sensitivity was observed among species at the various concentrations, suggesting the possibility of a shift towards tolerant species of fungi when they are exposed to glyphosate.



Plant Disease ◽  
2008 ◽  
Vol 92 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Maritza Abril ◽  
Kenneth J. Curry ◽  
Barbara J. Smith ◽  
David E. Wedge

Seven important plant pathogenic fungi (Botrytis cinerea, Colletotrichum acutatum, C. fragariae, C. gloeosporioides, Fusarium oxysporum, Phomopsis obscurans, and P. viticola) valuable in screening fungicides were tested. Our procedure included washing conidia to reduce germination times, incorporating Roswell Park Memorial Institute 1640 as a medium of known composition, and using coverslips in the 24-well cell culture clusters to document the effect of fungicides on fungal morphology. The natural product-based fungicide, sampangine, a sampangine analog, 4-bromosampangine, plus seven conventional fungicides (benomyl, captan, cyprodinil, fenbuconazole, fenhexamid, iprodione, and kresoxim-methyl) were tested in vitro for their ability to inhibit germination and growth of the seven fungal species. Sampangine inhibited germination in all fungi except C. acutatum. Comparison of results of germination and morphology microbioassays with results of microtiter assays suggests that some fungicides stop fungal germination, whereas others only slow down fungal growth. We hypothesize that sampangine, except against C. acutatum, has the same physical mode of action, germination inhibition, as the conventional fungicides captan, iprodione, and kresoxim-methyl. 4-Bromosampangine caused morphological anomalies including excessive branching of germ tubes of C. fragariae and splaying and branching of germ tubes of B. cinerea.





Botany ◽  
2008 ◽  
Vol 86 (2) ◽  
pp. 194-203 ◽  
Author(s):  
Lisa M. O’Connell ◽  
Kermit Ritland ◽  
Stacey Lee Thompson

As knowledge of historical migration in response to climatic change allows insight into the dynamic nature of range shifts, patterns of post-glacial colonization were evaluated for the western redcedar ( Thuja plicata Donn ex D. Don). We sampled and genotyped 620 trees from 23 populations across its range, including disjunct coastal and interior mesic sites. Genetic variation at eight microsatellite loci (mean alleles/locus = 10.30, mean expected heterozygosity = 0.755) was much higher than previous studies involving other markers, and inbreeding coefficients were predominantly positive (mean = 0.110). The two southernmost populations showed greatest genetic distances, while remaining populations clustered into three distinct geographic groups, comprising northern–coastal, central, and southern–interior populations, respectively. Genetic diversity decreased with latitude, while genetic and geographic distances were strongly correlated (r = 0.788). Our findings are consistent with independent routes of relatively recent colonization from one major refugium, located south of the glacial maximum, rather than ancient vicariant events. Regional bottlenecks, detected in the south of the range, may have resulted from local extinctions as the range of western redcedar advanced northward. Combined with inbreeding and the evolution of inbreeding tolerance, this may have promoted homozygosity for most classes of genetic markers as observed in other studies of this species.



Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 653
Author(s):  
Davide Ferrigo ◽  
Valentina Scarpino ◽  
Francesca Vanara ◽  
Roberto Causin ◽  
Alessandro Raiola ◽  
...  

Fusarium proliferatum and Fusarium subglutinans are common pathogens of maize which are known to produce mycotoxins, including moniliformin (MON) and fumonisins (FBs). Fungal secondary metabolism and response to oxidative stress are interlaced, where hydrogen peroxide (H2O2) plays a pivotal role in the modulation of mycotoxin production. The objective of this study is to examine the effect of H2O2-induced oxidative stress on fungal growth, as well as MON and FBs production, in different isolates of these fungi. When these isolates were cultured in the presence of 1, 2, 5, and 10 mM H2O2, the fungal biomass of F. subglutinans isolates showed a strong sensitivity to increasing oxidative conditions (27–58% reduction), whereas F. proliferatum isolates were not affected or even slightly improved (45% increase). H2O2 treatment at the lower concentration of 1 mM caused an almost total disappearance of MON and a strong reduction of FBs content in the two fungal species and isolates tested. The catalase activity, surveyed due to its crucial role as an H2O2 scavenger, showed no significant changes at 1 mM H2O2 treatment, thus indicating a lack of correlation with MON and FB changes. H2O2 treatment was also able to reduce MON and FB content in certified maize material, and the same behavior was observed in the presence and absence of these fungi, highlighting a direct effect of H2O2 on the stability of these mycotoxins. Taken together, these data provide insights into the role of H2O2 which, when increased under stress conditions, could affect the vegetative response and mycotoxin production (and degradation) of these fungi.



Sign in / Sign up

Export Citation Format

Share Document