Presence of antibiotic-resistant commensal bacteria in samples from agricultural, city, and national park environments evaluated by standard culture and real-time PCR methods

2010 ◽  
Vol 56 (9) ◽  
pp. 761-770 ◽  
Author(s):  
Hua Yang ◽  
Oleksandr A. Byelashov ◽  
Ifigenia Geornaras ◽  
Lawrence D. Goodridge ◽  
Kendra K. Nightingale ◽  
...  

This study examined the presence of antibiotic-resistant commensal bacteria among cattle operations representing areas heavily affected by agriculture, city locations representing areas affected by urban activities and indirectly affected by agriculture, and a national park representing an area not affected by agriculture. A total of 288 soil, fecal floor, and water samples were collected from cattle operations, from the city of Fort Collins, and from Rocky Mountain National Park (RMNP) in Colorado. In addition, a total of 42 new and unused feed, unused bedding, compost, and manure samples were obtained from the cattle operations. Total, tetracycline-resistant, and ceftiofur-resistant bacterial populations were enumerated by both standard culture plating and real-time PCR methods. Only wastewater samples from the cattle operations demonstrated both higher tetracycline-resistant bacterial counts (enumerated by the culture plating method) and tetracycline resistance gene copies (quantified by real-time PCR) compared to water samples collected from non-farm environments. The ceftiofur resistance gene, blaCMY-2, was not detectable in any of the samples, while the tetracycline resistance genes examined in this study, tet(B), tet(C), tet(W), and tet(O), were detected in all types of tested samples, except soil samples from RMNP. Tetracycline resistance gene pools quantified from the tet(O) and tet(W) genes were bigger than those from the tet(B) and tet(C) genes in fecal and water samples. Although only limited resistance genes, instead of a full set, were selected for real-time PCR quantification in this study, our results point to the need for further studies to determine natural and urban impacts on antibiotic resistance.

2004 ◽  
Vol 70 (12) ◽  
pp. 7372-7377 ◽  
Author(s):  
Marilyn S. Smith ◽  
Richard K. Yang ◽  
Charles W. Knapp ◽  
Yafen Niu ◽  
Nicholas Peak ◽  
...  

ABSTRACT A new real-time PCR method is presented that detects and quantifies three tetracycline resistance (Tcr) genes [tet(O), tet(W), and tet(Q)] in mixed microbial communities resident in feedlot lagoon wastewater. Tcr gene real-time TaqMan primer-probe sets were developed and optimized to quantify the Tcr genes present in seven different cattle feedlot lagoons, to validate the method, and to assess whether resistance gene concentrations correlate with free-tetracycline levels in lagoon waters. The method proved to be sensitive across a wide range of gene concentrations and provided consistent and reproducible results from complex lagoon water samples. The log10 of the sum of the three resistance gene concentrations was correlated with free-tetracycline levels (r 2 = 0.50, P < 0.001; n = 18), with the geometric means of individual resistance concentrations ranging from 4- to 8.3-fold greater in lagoon samples with above-median tetracycline levels (>1.95 μg/liter by enzyme-linked immunosorbent assay techniques) than in below-median lagoon samples. Of the three Tcr genes tested, tet(W) and tet(Q) were more commonly found in lagoon water samples. Successful development of this real-time PCR assay will permit other studies quantifying Tcr gene numbers in environmental and other samples.


2013 ◽  
Vol 92 (6) ◽  
pp. 1552-1559 ◽  
Author(s):  
Chong-Yue Zhong ◽  
An-Chun Cheng ◽  
Ming-Shu Wang ◽  
De-Kang Zhu ◽  
Qi-Hui Luo ◽  
...  

2017 ◽  
Vol 55 (7) ◽  
pp. 2137-2142 ◽  
Author(s):  
Deirdre L. Church ◽  
Heather Baxter ◽  
Tracie Lloyd ◽  
Oscar Larios ◽  
Daniel B. Gregson

ABSTRACTLife-threatening infection in neonates due to group BStreptococcus(GBS) is preventable by screening of near-term pregnant women and treatment at delivery. A total of 295 vaginal-rectal swabs were collected from women attending antepartum clinics in Calgary, Alberta, Canada. GBS colonization was detected by the standard culture method (Strep B Carrot Broth subcultured to blood agar with a neomycin disk) and compared to recovery with Strep Group B Broth (Dalynn Biologicals) subcultured to StrepBSelectchromogenic medium (CM; Bio-Rad Laboratories) and the Fast-Track Diagnostics GBS real-time PCR (quantitative PCR [qPCR]) assay (Phoenix Airmid Biomedical Corp.) performed with broth-enriched samples and the Abbottm2000sp/m2000rt system. A total of 62/295 (21%) women were colonized with GBS; 58 (19.7%) cases were detected by standard culture, while CM and qPCR each found 61 (20.7%) cases. The qPCR and CM were similar in performance, with sensitivities, specificities, and positive and negative predictive values of 98.4 and 98.4%, 99.6 and 99.6%, 98.4 and 98.4%, and 99.6 and 99.6%, respectively, compared to routine culture. Both qPCR and CM would allow more rapid reporting of routine GBS screening results than standard culture. Although the cost per test was similar for standard culture and CM, the routine use of qPCR would cost approximately four times as much as culture-based detection. Laboratories worldwide should consider implementing one of the newer methods for primary GBS testing, depending on the cost limitations of different health care jurisdictions.


2021 ◽  
Vol 156 (Supplement_1) ◽  
pp. S140-S140
Author(s):  
A Kalam

Abstract Introduction/Objective Diarrhea is a major source of morbidity and mortality in low-income and middle-income countries. In underdeveloped countries, diseases caused by viruses identified in environmental samples cause major health problems. Little knowledge about the frequency and pattern of viral contamination of drinking water sources in these resource-poor settings. Adenovirus which causes watery diarrhea, particular has been recognized as important causal pathogen. Adenovirus remains a global threat to public health and an indicator of inequity and lack of social development. Tap water samples from coastal sites in Karachi between 2019 and 2020 over a period of 11 months. The total of 40 tap water sample was examined for infectious Adenovirus by a real time polymerase chain reaction (PCR) amplification. Methods/Case Report This Pilot study is conducted on tap water samples from Karachi Pakistan, n=40 are processed. Extraction of nucleic acid from all filtered water samples collected with Sterivex filter units by using Qiagen DNeasy Power Water Sterivex Kit. As per the manufacturer’s instruction. Phocine herpesvirus(PhHV) is added as an external positive control to monitor the efficiency of nucleic acid extraction and amplification. TaqMan Universal PCR Master Mix (Thermo Fisher Scientific) is being used in probe based real time PCR assay,the below 35 Ct value is considered as a positive sample. Results (if a Case Study enter NA) Results showed the total of 37.7% of the sources were positive for adenovirus.The level of viral contamination was moderate to high. Conclusion The results has been showed that no seasonal pattern for viral contaminations was found after samples obtained during the dry and wet seasons were compared. Further the Real time PCR assay increases the sensitivity and provides the high resolution of pathogen detection.


2004 ◽  
Vol 48 (2) ◽  
pp. 556-560 ◽  
Author(s):  
Stein Christian Mohn ◽  
Arve Ulvik ◽  
Roland Jureen ◽  
Rob J. L. Willems ◽  
Janetta Top ◽  
...  

ABSTRACT Rapid and accurate identification of carriers of resistant microorganisms is an important aspect of efficient infection control in hospitals. Traditional identification methods of antibiotic-resistant bacteria usually take at least 3 to 4 days after sampling. A duplex real-time PCR assay was developed for rapid detection of ampicillin-resistant Enterococcus faecium (ARE). Primers and probes that are used in this assay specifically detected the d-Ala-d-Ala ligase gene of E. faecium and the modified penicillin-binding protein 5 gene (pbp5) carrying the Glu-to-Val substitution at position 629 (Val-629) in a set of 129 tested E. faecium strains with known pbp5 sequence. Presence of the Val-629 in the strain set from 11 different countries was highly correlated with ampicillin resistance. In a screening of hospitalized patients, the real-time PCR assay yielded a sensitivity and a specificity for the detection of ARE colonization of 95% and 100%, respectively. The results were obtained 4 h after samples were harvested from overnight broth of rectal swab samples, identifying both species and the resistance marker mutation in pbp5. This novel assay reliably identifies ARE 2 to 3 days more quickly than traditional culture methods, thereby increasing laboratory throughput, making it useful for rectal screening of ARE. The assay demonstrates the advantages of real-time PCR for detection of nosocomial pathogens.


Author(s):  
Eun-Sook Lee ◽  
So-Yang Cha ◽  
Jong-Soon Jung

Abstract DNA extraction methods were evaluated to reduce PCR inhibitors and quantify Helicobacter pylori directly from water samples using real-time PCR. Three nucleic acid extraction methods were evaluated for different types of water samples. While the QIAamp DNA mini kit for tissue was suitable for DNA extraction from treated water, the QIAamp DNA stool mini kit was still efficient in analyzing samples from river water after heavy rain and with high concentration of PCR inhibitors. The FastDNA SPIN Kit for Soil could extract DNA effectively from microbes in river and stream waters without heavy rain. Immunomagnetic separation (IMS) was used prior to DNA extraction and was a useful tool for reducing PCR inhibitors in influent and stream samples. H. pylori in various waters could be quantified directly by real-time PCR while minimizing the effect of PCR inhibitors by an appropriate method through the evaluation of DNA extraction methods considering the characteristics of the matrix water. The findings of the present study suggest that the types or characteristics of water sample by source and precipitation are an important factor in detecting H. pylori and they can be applied when detecting and monitoring of other pathogens in water.


2012 ◽  
Vol 95 (6) ◽  
pp. 1652-1655 ◽  
Author(s):  
Rakesh Kumar ◽  
K V Lalitha

Abstract A non-radio-labeled probe-based detection method was developed for rapid enumeration of Salmonella in seafood and water samples. A Salmonella-specific invA gene probe was developed using a digoxigenin-based non-radio labeling assay, which was evaluated with naturally contaminated seafood and water samples. The probe-based technique was further compared with the quantitative PCR assay. The method was specific for detection of different Salmonella serovars without any nonspecific hybridization with other Salmonella-related Enterobacteriaceae. The optimum labeling efficiency was determined for the labeled probe, and 10 pg/μL probe concentration was observed to be most efficient for detection of Salmonella colonies on nylon membrane. Quantification of Salmonella in naturally contaminated seafood and water samples (n = 21) was in the range 10–102 CFU/mL. The assay successfully quantified Salmonella in spiked seafood and water samples in the presence of background flora, and the entire assay was completed within 48 h. The probe-based assay was further evaluated with real-time PCR, and results showed that the assay was comparable to real-time PCR assay. Thus, this probe-based assay can be a rapid, useful, and alternative technique for quantitative detection of Salmonella in food, feed, and water samples.


Sign in / Sign up

Export Citation Format

Share Document