Predicting the elevated dead fine fuel moisture content in gorse (Ulex europaeus L.) shrub fuels

2009 ◽  
Vol 39 (12) ◽  
pp. 2355-2368 ◽  
Author(s):  
Stuart A.J. Anderson ◽  
Wendy R. Anderson

Methods were developed to predict the moisture content of the elevated dead fine fuel layer in gorse ( Ulex europaeus L.) shrub fuels. This layer has been observed to be important for fire development and spread in these fuels. The accuracy of the Fine Fuel Moisture Code (FFMC) of the Canadian Fire Weather Index System to predict the moisture content of this layer was evaluated. An existing model was used to determine the response time and equilibrium moisture content from field data. This response time was incorporated into a bookkeeping model, combining the FFMC and this response time–equilibrium moisture content model. The FFMC poorly predicted the elevated dead fuel moisture content in gorse fuels, and attempts to improve its accuracy through regression modelling were unsuccessful. The response time of the elevated dead fine fuel layer was very fast (38–77 min) and has important implications for fire danger rating. The bookkeeping approach was the most promising method to predict elevated dead fuel moisture content. A limitation was the inability to model fuel-level meteorology. However, this model warrants further validation and extension to other shrub fuels and could be incorporated into existing fire danger rating systems that can utilize hourly weather data.

2013 ◽  
Vol 136 ◽  
pp. 455-468 ◽  
Author(s):  
Marta Yebra ◽  
Philip E. Dennison ◽  
Emilio Chuvieco ◽  
David Riaño ◽  
Philip Zylstra ◽  
...  

2004 ◽  
Vol 34 (11) ◽  
pp. 2284-2293 ◽  
Author(s):  
Emilio Chuvieco ◽  
Inmaculada Aguado ◽  
Alexandros P Dimitrakopoulos

Fuel moisture content (FMC) estimation is a critical part of any fire danger rating system, since fuel water status is determinant in fire ignition and fire propagation. However, FMC alone does not provide a comprehensive assessment of fire danger, since other factors related to fire ignition (lightning, human factors) or propagation (wind, slope) also need to be taken into account. The problem in integrating all these factors is finding a common scale of danger rating that will make it possible to derive synthetic indices. This paper reviews the importance of FMC in fire ignition and fire propagation, as well as the most common methods of estimating FMC values. A simple method to convert FMC values to danger ratings is proposed, based on computing ignition potential from thresholds of moisture of extinction adapted to each fuel. The method has been tested for the Madrid region (central Spain), where a fire danger assessment system has been built. All the variables related to fire danger were integrated into a dedicated geographic information system and information provided to fire managers through a web mapping server.


2001 ◽  
Vol 10 (2) ◽  
pp. 215 ◽  
Author(s):  
E. A. Catchpole ◽  
W. R. Catchpole ◽  
N.R.Viney ◽  
W. L. McCaw ◽  
J. B. Marsden-Smedley

We develop a method for estimating equilibrium moisture content (EMC) and fuel moisture response time, using data collected for Eucalyptus twig litter. The method is based on the governing differential equation for the diffusion of water vapour from the fuel, and on a semi-physical formulation for EMC (Nelson 1984), based on the change in Gibbs free energy, which estimates the EMC as a function of fuel temperature and humidity. We then test the model on data collected in Western Australian mallee shrubland and in Tasmanian buttongrass moorland. This method is more generally applicable than those described by Viney and Catchpole (1991) and Viney (1992). The estimates of EMC and response time are in broad agreement with laboratory-based estimates for similar fuels (Anderson 1990a ; Nelson 1984). The model can be used to predict fuel moisture content by a book-keeping method. The predictions agree wellwith the observations for all three of our data sets.


2007 ◽  
Vol 16 (4) ◽  
pp. 390 ◽  
Author(s):  
I. Aguado ◽  
E. Chuvieco ◽  
R. Borén ◽  
H. Nieto

The estimation of moisture content of dead fuels is a critical variable in fire danger assessment since it is strongly related to fire ignition and fire spread potential. This study evaluates the accuracy of two well-known meteorological moisture codes, the Canadian Fine Fuels Moisture Content and the US 10-h, to estimate fuel moisture content of dead fuels in Mediterranean areas. Cured grasses and litter have been used for this study. The study was conducted in two phases. The former aimed to select the most efficient code, and the latter to produce a spatial representation of that index for operational assessment of fire danger conditions. The first phase required calibration and validation of an estimation model based on regression analysis. Field samples were collected in the Cabañeros National Park (Central Spain) for a six-year period (1998–2003). The estimations were more accurate for litter (r2 between 0.52) than for cured grasslands (r2 0.11). In addition, grasslands showed higher variability in the trends among the study years. The two moisture codes evaluated in this paper offered similar trends, therefore, the 10-h code was selected since it is simpler to compute. The second phase was based on interpolating the required meteorological variables (temperature and relative humidity) to compute the 10-h moisture code. The interpolation was based on European Centre for Medium Range Weather Forecasting (ECMWF) predictions. Finally, a simple method to combine the estimations of dead fuel moisture content with other variables associated to fire danger is presented in this paper. This method estimates the probability of ignition based on the moisture of extinction of each fuel type.


2007 ◽  
Vol 16 (2) ◽  
pp. 232 ◽  
Author(s):  
G. Pellizzaro ◽  
C. Cesaraccio ◽  
P. Duce ◽  
A. Ventura ◽  
P. Zara

Measurements of seasonal patterns of live fuel moisture content and ignitability (in terms of time to ignition) of four Mediterranean shrub species were performed in North Western Sardinia (Italy). Relationships between the two variables were evaluated. Relationships between live fuel moisture content and environmental conditions (i.e. rainfall, air temperature and soil moisture) were analysed. Two groups of species were identified in relation to the different response of live fuel moisture content to seasonal meteorological conditions. Seasonal patterns of live fuel moisture content were also compared with five meteorological drought indices: Duff Moisture Code and Drought Code of the Canadian Forest Fire Weather Index System, Keetch–Byram Drought Index, Canopy Drought Stress Index and Cumulative Water Balance Index. In addition, the capability of the meteorological drought indices to describe moisture variation for each species was evaluated. Although the Drought Code was formulated to describe changes in the moisture content of dead fuel, it was shown to have a good potential for modelling live fuel moisture variation of a group of shrubland species that are sensitive to meteorological conditions, with a clear and large decrease of moisture content during the drought season.


2021 ◽  
Vol 78 (2) ◽  
Author(s):  
Eva Gabriel ◽  
Ruth Delgado-Dávila ◽  
Miquel De Cáceres ◽  
Pere Casals ◽  
Antoni Tudela ◽  
...  

Abstract Key message We present a structured and curated database covering 21 years of LFMC measurements in the Catalan region, along with an associated R package to manage updates and facilitate quality processing and visualisation. The data set provides valuable information to study plant responses to drought and improve fire danger prediction. Dataset access is at10.5281/zenodo.4675335, and associated metadata are available athttps://metadata-afs.nancy.inra.fr/geonetwork/srv/fre/catalog.search#/metadata/583fdbae-3200-4fa7-877c-54df0e6c5542.


FLORESTA ◽  
2021 ◽  
Vol 51 (3) ◽  
pp. 696
Author(s):  
Benjamin Leonardo Alves White ◽  
Maria Flaviane Almeida Silva

The measurement of the fine dead fuel moisture content (FDFMC) is extremely important for forest fire prevention and suppression activities, as it has a great influence on the ignition probability and fire behavior. The Fine Fuel Moisture Code (FFMC) from the Fire Weather Index (FWI), is one of the most used models to estimate the FDFMC. Nevertheless, studies that assess the efficiency of this model in Brazil or in low latitude regions are rare. The present study aimed to evaluate the efficiency of the FFMC in an equatorial climate area and to develop a new model capable of estimating the FDFMC with greater precision. For this purpose, 861 random samples of fine dead fuel had their moisture content determined through oven drying. The obtained values were compared with those estimated by the FFMC and correlated with meteorological parameters to build a regression model. The results obtained show that the FDFMC was overestimated by the FFMC. The independent variables with the greatest influence on the FDFMC were, in decreasing order of significance: air relative humidity, air temperature, amount of rainfall in the last 24 hours and number of days without rainfall. The developed model presented good statistical parameters (r2 = 0.86; p <0.0001; RMSE = 0.22) and can be used, in areas with similar characteristics of the study area, to estimate the daily fire risk and to determine ideal conditions for prescribed burns.


2009 ◽  
Vol 18 (4) ◽  
pp. 430 ◽  
Author(s):  
Emilio Chuvieco ◽  
Isabel González ◽  
Felipe Verdú ◽  
Inmaculada Aguado ◽  
Marta Yebra

The present paper presents and discusses the relationships between live Fuel Moisture Content (FMC) measurements and fire occurrence (number of fires and burned area) in a Mediterranean area of central Spain. Grasslands and four shrub species (Cistus ladanifer L., Rosmarinus officinalis L., Erica australis L. and Phillyrea angustifolia L.) were sampled in the field from the spring to the summer season over a 9-year period. Higher seasonal FMC variability was found for the herbaceous species than for shrubs, as grasslands have very low values in summertime. Moisture variations of grasslands were found to be good predictors of number of fires and total burned surface, while moisture variation of two shrubs (C. ladanifer L. and R. officinalis L.) was more sensitive to both the total burned area and the occurrence of large fires. All these species showed significant differences between the FMC of high and low occurrence periods. Three different logistic regression models were built for the 202 periods of analysis: one to predict periods with more and less than seven fires, another to predict periods with and without large fires (>500 ha), and the third to predict periods with more and less than 200 ha burned. The results showed accuracy in predicting periods with a high number of fires (94%), and extensive burned area (85%), with less accuracy in estimating periods with large fires (58%). Finally, empirical functions based on logistic regression analysis were successfully related to fire ignition or potential burned area from FMC data. These models should be useful to integrate FMC measurements with other variables of fire danger (ignition causes, for instance), to provide a more comprehensive assessment of fire danger conditions.


Sign in / Sign up

Export Citation Format

Share Document