Provenance tests as Indicators of growth response to climate change in 10 north temperate tree species

1996 ◽  
Vol 26 (6) ◽  
pp. 1089-1095 ◽  
Author(s):  
K.K. Carter

Thirteen series of multilocation provenance test plantations, representing 10 tree species common to eastern North America, were analyzed to determine the effect of variation in average annual minimum temperature on height growth of trees from known seed source locations. Regressions were developed to predict provenance height, based on the temperature differentials between seed source locations and provenance locations. Regression equations for 12 of the 13 provenance test series were sigificant (p < 0.01) and accounted for an average of 29% of the height variation among provenances. For 8 of the 10 species examined, an increase in average annual minimum temperature is projected to result in a decline in tree height growth, relative to an adapted source.

2015 ◽  
Vol 45 (8) ◽  
pp. 970-977 ◽  
Author(s):  
Y.H. Weng ◽  
P. Lu ◽  
Q.F. Meng ◽  
M. Krasowski

Developing resistance to western gall rust (WGR) is important for maintaining healthy and productive jack pine plantations. In this study, we estimated genetic parameters of resistance to WGR and its relationship with tree height growth, based on data collected from three second-generation full-sib progeny testing series of jack pine planted in New Brunswick, Canada. Results indicated that (i) resistance to WGR in jack pine was controlled by both additive and dominance gene effects, with the latter playing a greater role; (ii) narrow-sense heritability estimates for resistance to WGR were low (mean = 0.05; series range = 0.00∼0.09), and broad-sense heritability estimates were moderate on an individual-tree basis (mean = 0.53) and considerably higher on the full-sib family mean basis (mean = 0.87); (iii) additive genetic correlation between tree height growth and WGR incidence was low (≤0.06) in two series and only slightly higher and favorable (–0.19) in one series, suggesting that selection on growth traits would not negatively affect WGR resistance; and (iv) mid-parental additive genetic and dominance effects on WGR were empirically correlated (>0.65), indicating that incorporating breeding for WGR resistance into current jack pine tree improvement programs with a seed orchard approach could partly capture the benefit from dominance effects. Although genetic gains in WGR resistance could be realized through various breeding and deployment schemes, it appeared that rapid improvement could be achieved through backward selection on full-sib family means.


2020 ◽  
Author(s):  
Yassine Messaoud ◽  
Anya Reid ◽  
Nadezhda M. Tchebakova ◽  
Annika Hofgaard ◽  
Faouzi Messsaoud

Abstract BackgroundThe climate variables effect on tree growth in boreal and temperate forests has received increased interest in the global context of climate change. However, most studies are geographically limited and involved few tree species. Here, sixteen tree species across western North America were used to investigate tree response to climate change at the species range scale. MethodsForest inventory data from 36,944 stands established between 1600 and 1968 throughout western Canada and USA were summarized. Height growth (total height at breast-height age of 50 years) of healthy dominant and co-dominant trees were related to annual and summer temperatures, annual and summer Palmer Drought Severity Index (PDSI, and tree establishment date (ED). Climate-induced height growth patterns were then tested to determine links to spatial environment (soil conditions and geographic locations), species range (coastal, interior, and both ranges) and species traits (shade tolerance and leaf form), using linear mixed model for the global height growth and general linear model to test the height growth patterns for each species. ResultsIncrease of temperatures and PDSI had a positive effect on height growth for most of the study species, whereas Alaska yellow-cedar (Chamaecyparis nootkatensis, (D. Don) Spach) height growth declined with ED. All explaining variables and the interactions explained 59% of the total height growth variance. Although tree height growth response was species-specific, increased height growth during the 20th century was more pronounced for coastal ranged species, high shade tolerant species, and broadleaf species. Furthermore, height growth increase occurred mostly on rich soil, at the northernmost species range, and, unexpectedly, at lower elevations. A decline in height growth for some species further north and especially higher in elevation possibly related to increased cloudiness and precipitation. However, drought conditions remain in interior areas despite moving northward and upward that decrease height growth. ConclusionThese results highlight the general trend (species characteristics and range) and the species-specific height patterns, indicating the spatio-temporal complexity of the growth response to recent global climate change.


Sign in / Sign up

Export Citation Format

Share Document