annual minimum temperature
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 33)

H-INDEX

13
(FIVE YEARS 2)

MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 173-180
Author(s):  
NAVNEET KAUR ◽  
M.J. SINGH ◽  
SUKHJEET KAUR

This paper aims to study the long-term trends in different weather parameters, i.e., temperature, rainfall, rainy days, sunshine hours, evaporation, relative humidity and temperature over Lower Shivalik foothills of Punjab. The daily weather data of about 35 years from agrometeorological observatory of Regional Research Station Ballowal Saunkhri representing Lower Shivalik foothills had been used for trend analysis for kharif (May - October), rabi (November - April), winter (January - February), pre-monsoon (March - May), monsoon (June - September) and post monsoon (October - December) season. The linear regression method has been used to estimate the magnitude of change per year and its coefficient of determination, whose statistical significance was checked by the F test. The annual maximum temperature, morning and evening relative humidity has increased whereas rainfall, evaporation sunshine hours and wind speed has decreased significantly at this region. No significant change in annual minimum temperature and diurnal range has been observed. Monthly maximum temperature revealed significant increase except January, June and December, whereas, monthly minimum temperature increased significantly for February, March and October and decreased for June. Among different seasons, maximum temperature increased significantly for all seasons except winter season, whereas, minimum temperature increased significantly for kharif and post monsoon season only. The evaporation, sunshine hours and wind speed have also decreased and relative humidity decreased significantly at this region. Significant reduction in kharif, monsoon and post monsoon rainfall has been observed at Lower Shivalik foothills. As the region lacks assured irrigation facilities so decreasing rainfall and change in the other weather parameters will have profound effects on the agriculture in this region so there is need to develop climate resilient agricultural technologies.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 67
Author(s):  
Helen Teshome ◽  
Kindie Tesfaye ◽  
Nigussie Dechassa ◽  
Tamado Tana ◽  
Matthew Huber

Smallholder farmers in East and West Hararghe zones, Ethiopia frequently face problems of climate extremes. Knowledge of past and projected climate change and variability at local and regional scales can help develop adaptation measures. A study was therefore conducted to investigate the spatio-temporal dynamics of rainfall and temperature in the past (1988–2017) and projected periods of 2030 and 2050 under two Representative Concentration Pathways (RCP4.5 and RCP8.5) at selected stations in East and West Hararghe zones, Ethiopia. To detect the trends and magnitude of change Mann–Kendall test and Sen’s slope estimator were employed, respectively. The result of the study indicated that for the last three decades annual and seasonal and monthly rainfall showed high variability but the changes are not statistically significant. On the other hand, the minimum temperature of the ‘Belg’ season showed a significant (p < 0.05) increment. The mean annual minimum temperature is projected to increase by 0.34 °C and 2.52 °C for 2030, and 0.41 °C and 4.15 °C for 2050 under RCP4.5 and RCP8.5, respectively. Additionally, the mean maximum temperature is projected to change by −0.02 °C and 1.14 °C for 2030, and 0.54 °C and 1.87 °C for 2050 under RCP4.5 and RCP 8.5, respectively. Annual rainfall amount is also projected to increase by 2.5% and 29% for 2030, and 12% and 32% for 2050 under RCP4.5 and RCP 8.5, respectively. Hence, it is concluded that there was an increasing trend in the Belg season minimum temperature. A significant increasing trend in rainfall and temperature are projected compared to the baseline period for most of the districts studied. This implies a need to design climate-smart crop and livestock production strategies, as well as an early warning system to counter the drastic effects of climate change and variability on agricultural production and farmers’ livelihood in the region.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 619-619
Author(s):  
Lingling Zhang ◽  
Ye Luo ◽  
Xi Pan ◽  
Qing Wang

Abstract Population aging will inevitably bring an increasing burden of poor cognitive function. The risk factors for cognitive decline have been widely studied. Even though environmental hazards have the greatest adverse impacts on older adults and the existing evidence has shown that green space, air pollution, and weather have an impact on cognitive function, most of the studies were conducted in developed countries and limited to cross-sectional analyses. China has the largest aging population in the world so the research evidence from it can offer an insight to the study in other developing countries facing similar issues and inform future public health policy and disease control. Using the data from a nationally representative sample of adults aged 45 years and older from the three waves of China Health and Retirement Longitudinal Study (CHARLS 2011-2015) and China City Statistical Yearbook, this study estimated multilevel growth curve models for the effects of green space coverage, air pollution, and weather conditions on cognitive function and cognitive decline. It showed that after controlling for sociodemographic characteristics, built area green coverage rate was positively associated with cognition score at baseline, and higher annual minimum temperature was associated with faster decline in cognitive function. These effects did not substantially change after weekly total hours of physical activities and levels of social engagement were added and the interaction effects were examined between environmental conditions with them, respectively. More research on the mechanisms of the effects of environmental factors on cognition is needed such as the subgroup analyses.


Author(s):  
Subhankar Biswas ◽  
Ajay Verma ◽  
R. Sendhil ◽  
AK Dixit ◽  
Ajmer Singh ◽  
...  

The cause and effect relationship of climatic variables on milk production of indigenous cattle and buffalo had been carried in West Bengal state during 2019-2020. Regression analysis indicated the indigenous cow milk production was directly responsive to annual minimum temperature, while crossbred cow milk production was indirectly responsive to annual maximum temperature and relative humidity. The buffalo milk production was inversely related to annual maximum temperature and relative humidity. More than half of surveyed farmers had a medium level of experience in farming. Majority of farmers were perceived climate variability in general like increase in temperature during the summer season, late onset of monsoon and early withdrawal of monsoon season. For crop farming, crop diversification was the most preferred adaptation strategy among the farmers followed by changing crop variety. For dairy farming, provide proper shed and shelter was most preferred adaptation strategy followed by provide additional fresh drinking water in summer.


2021 ◽  
Author(s):  
Ayalew Assefa ◽  
Abebe Tibebu ◽  
Amare Bihon ◽  
Alemu Dagnachew ◽  
Yimer Muktar

Abstract African horse sickness is a vector-borne, non-contagious and highly infectious disease of equines caused by African Horse Sickness viruses (AHSv) that mainly affect horses. The occurrence of the disease causes huge economic impacts because of its fatality rate is high, trade ban and disease control costs. In planning of vectors and vector borne diseases, the application of Ecological niche models (ENM) used an enormous contribution in exactly delineating the suitable habitats of the vector. We developed an ENM with the objective of delineating the global suitability of AHSv outbreaks retrospective based on data records from 2005–2019. The model was developed in R software program using Biomod2 package with an Ensemble modeling technique. Predictive environmental variables like mean diurnal range, mean precipitation of driest month(mm), precipitation seasonality (cv), mean annual maximum temperature (oc), mean annual minimum temperature (oc) mean precipitation of warmest quarter(mm), mean precipitation of coldest quarter (mm) mean annual precipitation (mm), solar radiation (kj /day), elevation/altitude (m), wind speed (m/s) were used to develop the model. From these variables, solar radiation, mean maximum temperature, average annual precipitation, altitude and precipitation seasonality contributed 36.83%, 17.1%, 14.34%, 7.61%, and 6.4%, respectively. The model depicted the sub-Sahara African continent as the most suitable area for the virus. Mainly Senegal, Burkina Faso, Niger, Nigeria, Ethiopia, Sudan, Somalia, South Africa, Zimbabwe, Madagascar and Malawi are African countries identified as highly suitable countries for the virus. Besides, OIE-listed disease-free countries like India, Australia, Brazil, Paraguay and Bolivia have been found suitable for the virusThis model can be used as an epidemiological tool in planning control and surveillance of diseases nationally or internationally.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1492
Author(s):  
Tao Zhang ◽  
Lei Nie ◽  
Min Zhang ◽  
Shulin Dai ◽  
Yan Xu ◽  
...  

In recent decades, numerous tunnels have been built in the cold region of China. However, the temperature field of topographically biased tunnels in the monsoon freeze zone has not been sufficiently studied. In this study, we monitored the temperature of the surrounding rock in two topographic bias sections of the Huitougou Tunnel and analyzed the results by fitting them to the monitoring results. The results showed that the temperature of the surrounding rock on both sides after tunnel excavation varied periodically in an approximate triangular function. As the distance from the cave wall increased, the annual average temperature of the surrounding rock did not change significantly, the amplitude decreased, and the delay time increased, while the annual maximum temperature decreased, and the annual minimum temperature increased. The heat generated by blasting, the heat of hydration of the primary and secondary lining, and the decorated concrete all caused a significant increase in the temperature of the surrounding rock within 4 m for a short period of time. Both construction and topographic factors led to asymmetry in the distribution of the surrounding rock temperature in different ways. The results of this paper are intended as a reference for other studies on temperature in deviated tunnels.


2021 ◽  
Author(s):  
Elias Bojago ◽  
Dalga Yaya

Abstract Background: This paper investigated the recent trends of precipitation and temperature on Damota Gale districts of Wolaita Zone. This study used the observed historical meteorological data from 1987 to 2019 to analyze the trends. The magnitude of the variability or fluctuations of the factors varies according to locations. Hence, examining the spatiotemporal dynamics of meteorological variables in the context of changing climate, particularly in countries where rain fed agriculture is predominant, is vital to assess climate-induced changes and suggest feasible adaptation strategies. Results: Both rainfall and temperature data for period of 1987 to 2019 were analyzed in this study. Statistical trend analysis techniques namely Mann–Kendall test and Sen's slope estimator were used to examine and analyze the problems. The long-term trend of rainfall and temperature was evaluated by linear regression and Mann–Kendall test. The temperature was shown a positive trend for the both annual and seasonal periods and had a statistical significance at 95%.Conclusion: This study concluded that there were a declining rainfall in the three seasons; spring, summer and winter but in autumn it shows increasing trends and rapid warming, especially in the last 32 years. The detailed analysis of the data for 32 years indicate that the annual maximum temperature and annual minimum temperature have shown an increasing trend, whereas the Damota Gale seasonal maximum and minimum temperatures have shown an increasing trend. The findings of this study will serve as a reference for climate researchers, policy and decision makers.


2021 ◽  
Author(s):  
Mahmoud Sami Abourayya ◽  
E.K. Nabila

Egypt spends a lot of hard currency annually to import nut fruits (almond- walnut and pistachio) to apply market needs of these crops especially in Ramadan month. It is known that there are wide uncultivated areas in Sinai despite of its suitability for cultivation. Cultivating nut trees can share in development of Sinai. There are scarcity of these trees in Egypt in spite of the relevance of environmental conditions for growing almond trees in different regions. Since the last 25 years I and a group of scientists studied the possibility of achieving self sufficiency of almond by cultivating in Sinai Peninsula and different regions after carrying out climatic, economical, water requirements, nutrition and genetic studies. Many fruit trees require cold temperatures during the winter to overcome their seasonal dormancy.() Most fruit species that evolved in temperate or cool subtropical climates have such chilling requirements that need to be fulfilled each winter to achieve homogeneous and simultaneous flowering and regular crop yields. Coldness. (). Monthly historical data of minimum temperature from Central laborator for Agricultural climate of four districts were analyzed in order to determine the changes in minimum temperature from October to February during the period from 2001 to 2010. Understanding monthly temperature changes from October to February during the period 2001–2010 was the first step in carrying out this study. The highest minimum temperature was found during 2010 year during the studied period in the October month for all districts except in November and December, the highest minimum temperature was observed in the year of 2009. Saint Catherine district was the lowest minimum temperature in all months during the studied period. Understanding average monthly temperature trends of the studied time serious from 2001 to 2010 was the second step in carrying out this study. October month was the highest values of minimum temperature and January was the lowest value of minimum temperature at the four districts. The highest and lowest values for temperature were found in Ras Sudr and Saint Catherine respectively. The third step in carrying out this study is to understanding the annual trend of minimum temperature for the period 2001–2010 at the Suez, Ras Sudr, El Tur and Saint Catherine districts. Data shows the average annual minimum temperature at the four districts during the years from 2001 up to 2010 and it can be observed that, Ras Sudr district has the highest average annual minimum temperature while Saint Catherine has the lowest one among the studied districts. It can be concluded that the carried out climatic studies, estimate the irrigation water requirements of almond trees and genetic studies help in solving the problem of achieving self sufficiency of almond fruits through expansion of cultivating almond trees in Egypt.


2021 ◽  
Author(s):  
Elias Bojago ◽  
Dalga YaYa

Abstract This paper investigated the recent trends of precipitation and temperature on Damota Gale districts of Wolaita Zone. This study used the observed historical meteorological data from 1987 to 2019 to analyze the trends. The magnitude of the variability or fluctuations of the factors varies according to locations. Hence, examining the spatiotemporal dynamics of meteorological variables in the context of changing climate, particularly in countries where rain-fed agriculture is predominant, is vital to assess climate-induced changes and suggest feasible adaptation strategies. Both rainfall and temperature data for a period of 1987 to 2019 were analyzed in this study. Statistical trend analysis techniques namely Mann–Kendall test and Sen's slope estimator were used to examine and analyze the problems. The long-term trend of rainfall and temperature was evaluated by linear regression and Mann–Kendall test. The temperature was shown a positive trend for both annual and seasonal periods and had a statistical significance of 95%. This study concluded that there was a declining rainfall in the three seasons; spring, summer and winter but in autumn it shows increasing trends and rapid warming, especially in the last 32 years. The detailed analysis of the data for 32 years indicate that the annual maximum temperature and annual minimum temperature have shown an increasing trend, whereas the Damota Gale seasonal maximum and minimum temperatures have shown an increasing trend. The findings of this study will serve as a reference for climate researchers, policy and decision-makers.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Biniyam Yisehak ◽  
Henok Shiferaw ◽  
Haftu Abrha ◽  
Amdom Gebremedhin ◽  
Haftom Hagos ◽  
...  

Abstract Background Below-normal availability of water for a considerable period of time induces occurrence of drought. This paper investigates the Spatio-temporal characteristics of meteorological drought under changing climate. The climate change was analyzed using delta based statistical downscaling approach of RCP 4.5 and RCP 8.5 in R software packages. The meteorological drought was assessed using the Reconnaissance Drought Index (RDI). Results The result of climate change projections showed that the average annual minimum temperature will be increased by about 0.8–2.9 °C. The mean annual maximum temperature will be also increased by 0.9–3.75 °C. The rainfall projection generally showed an increasing trend, it exhibited an average annual increase of 3.5–13.4 % over the study area. The projected drought events reached its maximum severity indicated extreme drought in the years 2043, 2044, 2073, and 2074. The RDI value shows drought will occurred after 1–6 and 2–7 years under RCP 4.5 and RCP 8.5 emission scenarios respectively over the study area. Almost more than 72 % of the current and future spatial coverage of drought in the study area will be affected by extreme drought, 22.3 % severely and 5.57 % also moderate drought. Conclusions Therefore, the study helps to provide useful information for policy decision makers to implement different adaptation and mitigation measures of drought in the region.


Sign in / Sign up

Export Citation Format

Share Document