Soil nitrogen status 8 years after whole-tree clear-cutting

1995 ◽  
Vol 25 (8) ◽  
pp. 1346-1355 ◽  
Author(s):  
Chris E. Johnson

Previous research on chronosequences of even-aged northern hardwood stands has suggested that forest clearing is accompanied by large losses of nitrogen from the forest floor. The timing of the losses and the fate of a large fraction of the lost nitrogen are unclear. The purpose of this investigation was to study these questions through direct measurement of soil nitrogen concentrations and pools through time on an experimental catchment cleared in a whole-tree harvest in 1983–1984. Nitrogen losses from the forest floor at the site, the Hubbard Brook Experimental Forest, New Hampshire, were lower than predictions based on previous research. The mean forest floor nitrogen pool was 17% lower 8 years after clear-cutting of the site (P = 0.18). Predictions based on chronosequence studies suggest that 25–40% of the forest floor nitrogen would be lost after 8 years. Mechanical disturbance during logging may play a role in limiting short-term nitrogen losses. The steep midsection of the catchment experienced the greatest losses of nitrogen and carbon, while pools in the relatively flat spruce-fir zone at the upper elevations were unchanged. Carbon was preferentially lost from soil organic matter, relative to nitrogen, resulting in significant decreases in the C/N and C/organic matter ratios in the soil. The N/organic matter ratio was generally unchanged. Nitrogen losses can be limited after clear-cutting by minimizing organic matter losses and promoting rapid regrowth.

1984 ◽  
Vol 14 (6) ◽  
pp. 763-767 ◽  
Author(s):  
C. Anthony Federer

Organic content of the forest floor decreases for several years after clear-cutting, and then slowly recovers. Thickness, bulk density, organic matter, and nitrogen content of forest floors were measured for 13 northern hardwood stands in the White Mountains of New Hampshire. Stands ranged from 1 to about 100 years in age. Forest-floor thickness varied significantly with stand age, but bulk density, organic fraction, and nitrogen fraction were independent of age. Total organic content of the forest floor agreed very well with data from Covington's (W. W. Covington 1981. Ecology, 62: 41–48) study of the same area. Both studies indicated that mature forest floors have about 80 Mg organic matter•ha−1 and 1.9 Mg nitrogen•ha−1. Within 10 or 15 years after cutting, the organic matter content of the floor decreases to 50 Mg•ha−1, and its nitrogen content to 1.1 Mg•ha−1. The question whether the decrease is rapid and the minimum broad and flat, or if the decrease is gradual and the minimum sharp, cannot be answered. The subsequent increase to levels reached in mature forest requires about 50 years. Some of the initial decrease in organic matter and nitrogen content of the forest floor may be caused by organic decomposition and nitrogen leaching, but mechanical and chemical mixing of floor into mineral soil, during and after the harvest operation, may also be important. The difference is vital with respect to maintenance of long-term productivity.


1991 ◽  
Vol 55 (2) ◽  
pp. 497 ◽  
Author(s):  
Chris E. Johnson ◽  
Arthur H. Johnson ◽  
Thomas G. Huntington ◽  
Thomas G. Siccama

1993 ◽  
Vol 23 (5) ◽  
pp. 1001-1014 ◽  
Author(s):  
John Yarie

Two mature floodplain white spruce (Piceaglauca (Moench) Voss) ecosystems (stage VIII) located on islands in the Tanana River, approximately 20 km southwest of Fairbanks, Alaska, were clear-cut during the winter of 1985–1986 to quantify the effects of clear-cutting on selected environmental characteristics. Clearings in earlier successional stages (poplar–alder (Populus–Alnus), stage V; and open willow (Salix), stage III) were used to contrast the environmental parameters with the earlier stages found in the primary successional sequence. After clear-cutting, total radiation at the soil surface increased to early successional stage III levels. Potential evaporation from the soil surface increased 5-fold as a result of clearing in the stage VIII sites and was substantially greater than that found in the stage III sites by other researchers. Clearing had relatively little effect on air temperature. The concentration of P and K was significantly lower in the forest floor of both clearcuts, and the concentration of C was significantly higher at VIII-A-T (stage VIII–site A–treated (cleared) plot) when compared with the control stands. There was a decrease in total forest floor biomass at both clear-cut plots. Organic matter, total N, available NH4 and P, and extractable Mg and K all decreased after cutting, whereas pH increased. Decomposition of spruce foliage on the forest floor surface was slower in the clearcuts. Nitrogen immobilization occurred during the first 2 years of decomposition. During the third year it appeared that some mineralization was beginning to occur but the levels were very low, averaging only 3 mg N per bag in the clear-cut areas. Plant growth analysis indicated that growth was limited by high mineral soil salt content in the early successional stages (III) and that this limitation was species specific. Balsam poplar (Populusbalsamifera L.) appears to be more tolerant of the high cation content of the stage III sites compared with trembling aspen (Populustremuloides Michx.). By the time successional development has progressed to stage V, the soil has been sufficiently augmented by the inclusion of organic matter from the developing vegetation and the fixation of N by alder to result in higher seedling growth rates in the cleared areas.


1978 ◽  
Vol 8 (3) ◽  
pp. 306-315 ◽  
Author(s):  
John D. Aber ◽  
Daniel B. Botkin ◽  
Jerry M. Melillo

The effects of different intensities of forest management on forest floor organic matter and nitrogen dynamics in northern hardwoods were simulated with a computer model built from the extensive data base of the Hubbard Brook Ecosystem Study. Three cutting intensities and three rotation lengths were tested. In all cases, both nitrogen availability and forest floor organic matter declined for 15–30 years following cutting and required 60–80 years to recover to precut levels. Rotation length had a much greater effect on the forest floor than harvesting intensity with short-rotation (30-year) complete forest harvesting causing the greatest reduction in both biomass and nitrogen availability. Average forest floor biomass under this treatment was reduced to roughly one-half of that under clear-cutting (90-year rotation).


2020 ◽  
Vol 117 (3) ◽  
pp. 351-365
Author(s):  
J. Pijlman ◽  
G. Holshof ◽  
W. van den Berg ◽  
G. H. Ros ◽  
J. W. Erisman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document