Main effects of nitrogen supply and drought stress upon whole-plant carbon allocation in poplar

1997 ◽  
Vol 27 (9) ◽  
pp. 1413-1419 ◽  
Author(s):  
L Ibrahim ◽  
M F Proe ◽  
A D Cameron
2013 ◽  
Vol 765-767 ◽  
pp. 2971-2975 ◽  
Author(s):  
Xue Gong ◽  
Ming Li Liu ◽  
Li Jun Zhang ◽  
Wei Liu ◽  
Che Wang

Sucrose transporters (SUCs or SUTs) are considered as the important carriers and responsible for the loading, unloading and distribution of sucrose, but at present there is no report that SUCs are involved in sucrose distribution and metabolism under drought stress at the whole-plant level. AtSUC4, as the unique member of SUT4-clade inArabidopsis thaliana, may be important for plant stress tolerance. Here, by analyzing two homozygous mutation lines ofAtSUC4(Atsuc4-1andAtsuc4-2), we found drought stress induced higher sucrose, lower fructose and glucose contents in shoots, and lower sucrose, higher fructose and glucose contents in roots of these mutants compared with the wild-type (WT), leading to an imbalance of sucrose distribution, fructose and glucose (sucrose metabolites) accumulation changes at the whole-plant level. Thus we believe thatAtSUC4regulates sucrose distribution and metabolism in response to drought stress.


2021 ◽  
Vol 11 ◽  
Author(s):  
Anjuman Arif ◽  
Najma Parveen ◽  
Muhammad Qandeel Waheed ◽  
Rana Muhammad Atif ◽  
Irem Waqar ◽  
...  

This study was planned with the purpose of evaluating the drought tolerance of advanced breeding lines of chickpea in natural field conditions. Two methods were employed to impose field conditions; the first: simulating drought stress by growing chickpea genotypes at five rainfed areas, with Faisalabad as the non-stressed control environment; and the second: planting chickpea genotypes in spring to simulate a drought stress environment, with winter-sowing serving as the non-stressed environment. Additive main effects and multiplicative interaction (AMMI) and generalized linear models (GLM) models were both found to be equally effective in extracting main effects in the rainfed experiment. Results demonstrated that environment influenced seed yield, number of primary and secondary branches, number of pods, and number of seeds most predominantly; however, genotype was the main source of variation in 100 seed weight and plant height. The GGE biplot showed that Faisalabad, Kallur Kot, and Bhakkar were contributing the most in the GEI, respectively, while Bahawalpur, Bhawana, and Karor were relatively stable environments, respectively. Faisalabad was the most, and Bhakkar the least productive in terms of seed yield. The best genotypes to grow in non-stressed environments were CH39/08, CH40/09, and CH15/11, whereas CH28/07 and CH39/08 were found suitable for both conditions. CH55/09 displayed the best performance in stress conditions only. The AMMI stability and drought-tolerance indices enabled us to select genotypes with differential performance in both conditions. It is therefore concluded that the spring-sown experiment revealed a high-grade drought stress imposition on plants, and that the genotypes selected by both methods shared quite similar rankings, and also that manually computed drought-tolerance indices are also comparable for usage for better genotypic selections. This study could provide sufficient evidence for using the aforementioned as drought-tolerance evaluation methods, especially for countries and research organizations who have limited resources and funding for conducting multilocation trials, and performing sophisticated analyses on expensive software.


2019 ◽  
Vol 13 ◽  
pp. 03007 ◽  
Author(s):  
Rachele Falchi ◽  
Elisa Petrussa ◽  
Marco Zancani ◽  
Valentino Casolo ◽  
Paola Beraldo ◽  
...  

Grapevines store non-structural carbohydrates (NSC) during late summer to sustain plant development at the onset of the following spring’s growth. Starch is the main stored carbohydrate, found in the wood-ray parenchyma of roots and canes. Although the relationship between hydraulic and plant photosynthetic performance is well-recognized, little research has been done on the long-term effects of drought in grapevines adopting different strategies to cope with water stress (i.e. isohydric and anisohydric). We performed our study by exposing two different grape cultivars (Syrah and Cabernet Sauvignon) to a short but severe drought stress, at two stages of the growing season (July and September). No marked differences in the physiological and hydraulic responses of the two varieties were found, probably due to our experimental conditions. However, anatomical and biochemical characterization of overwintering canes pointed out several interesting outcomes. We found a significant and parallel increase of starch and medullar ray number in both cultivars exposed to early water stress. We hypothesize that stressed vines limited their carbon allocation to growth, while shifting it to starch accumulation, with a most evident effect in the period of intense photosynthetic activity. We also speculate that a different aptitude to osmotic adjustment may underlay variation in starch increase and the specific involvement of bark NSC in the two cultivars.


Sign in / Sign up

Export Citation Format

Share Document