Parathyroïdes et hypertension artérielle à l'acétate de désoxycorticostérone chez le rat

1979 ◽  
Vol 57 (2) ◽  
pp. 157-162 ◽  
Author(s):  
A. Berthelot ◽  
R. Schleiffer ◽  
A. Gairard

We studied the importance of parathyroids in the development of mineralocorticoid hypertension in male Sprague–Dawley rats. Ablation of the parathyroids 1 week before deoxycorticosterone acetate (DOCA) + NaCl administration prevented development of hypertension (for 1 year). But ablation of parathyroids 2 weeks after the start of treatment has no effect on the development of arterial hypertension. Autotransplantation of parathyroids in thyroidectomized rats caused a recurrence of mineralocorticoid hypertension, which was completed after DL-thyroxine supplementation: blood pressure levels were nearly the same as in DOCA sham rats. We conclude that parathyroid glands favor the establishment of mineralocorticoid hypertension in the rat. These results raise the question of the mechanism of action of parathyroid hormone in the hypertensive process.

1980 ◽  
Vol 58 (5) ◽  
pp. 365-371 ◽  
Author(s):  
A. Berthelot ◽  
A. Gairard

1. Hypertension induced by treatment with deoxycorticosterone acetate and sodium chloride was studied in male Sprague-Dawley rats and related to parathyroid hormone secretion. 2. Lack of parathyroid hormone (due to parathyroidectomy) or decreased parathormone secretion (due to a high-calcium diet) partially inhibited the development of arterial hypertension. 3. In contrast, in thyroparathyroidectomized rats supplemented with thyroxine, the administration of parathyroid hormone rapidly elevated arterial blood pressure. 4. Maintaining a physiological concentration of serum calcium in the absence of parathyroid hormone (by feeding a high-calcium diet to parathyroidectomized rats) was not sufficient to establish mineralocorticoid hypertension. 5. These results show that parathyroid hormone is necessary for the complete development of mineralocorticoid hypertension.


1996 ◽  
Vol 271 (6) ◽  
pp. R1477-R1480
Author(s):  
M. J. Onsgard-Meyer ◽  
R. J. Kerrigan ◽  
M. Collins ◽  
A. A. Khraibi ◽  
F. G. Knox

The objective of this study was to examine the effect of NG-monomethyl-L-arginine (L-NMMA) on phosphate excretion in the presence and absence of parathyroid hormone (PTH). Renal clearances were obtained before and during infusion of L-NMMA (15 mg/kg bolus and 500 micrograms.kg-1.min-1 infusion) in Sprague-Dawley rats with intact parathyroid glands (n = 6), in thyroparathyroidectomized (TPTX) rats receiving a constant infusion of PTH-(1-34) (0.01-0.03 U.kg-1.min-1) (n = 11) throughout the experiment, or in TPTX rats, that received an acute infusion of PTH-(1-34) (33 U/kg bolus and 1 U.kg-1.min-1 infusion) after L-NMMA infusion alone (n = 7). In rats with intact parathyroid glands, L-NMMA increased the fractional excretions of phosphate (FEPi) and sodium (FENa) and mean arterial pressure (MAP) (delta 8.6 +/- 1.5%, delta 0.62 +/- 0.1%, and delta 26.7 +/- 4.9 mmHg, respectively; P < 0.05). In TPTX rats receiving a constant infusion of PTH, L-NMMA again increased FEPi, FENa, and MAP (delta 9.5 +/- 3.6%, delta 1.1 +/- 0.4%, and delta 28.4 +/- 4.5 mmHg, respectively; P < 0.05). However, in TPTX rats, L-NMMA alone did not increase FEPi (delta 0.9 +/- 0.3%), whereas the subsequent infusion of PTH with L-NMMA increased FEPi (delta 15.6 +/- 3.1%; P < 0.05). In an additional group of intact and TPTX rats, the fractional excretion of lithium (FELi) was measured as an index of proximal reabsorption. L-NMMA increased FELi in intact rats (delta 13.2 +/- 2.6%; P < 0.05), but not in TPTX rats (delta 4.2 +/- 3.3%). In conclusion, L-NMMA increases phosphate excretion in association with increases in MAP and FENa, and this phosphaturic effect is dependent on the presence of PTH.


1989 ◽  
Vol 257 (4) ◽  
pp. R909-R916
Author(s):  
W. M. Barron ◽  
J. A. Durr ◽  
R. W. Schrier ◽  
M. D. Lindheimer

Plasma osmolality (Posmol) decreases in pregnancy, possibly because of hemodynamically mediated arginine vasopressin (AVP) secretion, i.e., inadequate vascular filling and/or decreased blood pressure. This hypothesis was tested in Sprague-Dawley rats treated on gestational days 1-18 or 13-18 with 1) deoxycorticosterone acetate (DOCA) + standard chow (0.5% Na), 2) vehicle + standard chow, or 3) high-Na (1.25%) diet. Renal sodium "escape" and suppression of the renin-aldosterone system suggested "effective volume expansion," yet Posmol was similar in all pregnant groups, 7-10 mosmol/kg below levels in virgin controls, and plasma AVP was unaltered. Apparent osmotic thresholds for AVP secretion, similar in control and DOCA-treated gravid animals, were 8-10 mosmol/kg below those of untreated virgin rats. Norepinephrine + DOCA, administered to gravid animals consuming normal or high-Na chow, increased blood pressure approximately 10% above control levels, but this also failed to alter Posmol. These data suggest that mechanisms other than hemodynamically mediated AVP secretion are responsible for the osmoregulatory alterations accompanying rodent pregnancy.


2008 ◽  
Vol 295 (5) ◽  
pp. R1546-R1554 ◽  
Author(s):  
Melissa Li ◽  
Xiaoling Dai ◽  
Stephanie Watts ◽  
David Kreulen ◽  
Gregory Fink

Endothelin (ET) type B receptors (ETBR) are expressed in multiple tissues and perform different functions depending on their location. ETBR mediate endothelium-dependent vasodilation, clearance of circulating ET, and diuretic effects; all of these should produce a fall in arterial blood pressure. However, we recently showed that chronic activation of ETBR in rats with the selective agonist sarafotoxin 6c (S6c) causes sustained hypertension. We have proposed that one mechanism of this effect is constriction of capacitance vessels. The current study was performed to determine whether S6c hypertension is caused by increased generation of reactive oxygen species (ROS) and/or activation of the sympathetic nervous system. The model used was continuous 5-day infusion of S6c into male Sprague-Dawley rats. No changes in superoxide anion levels in arteries and veins were found in hypertensive S6c-treated rats. However, superoxide levels were increased in sympathetic ganglia from S6c-treated rats. In addition, superoxide levels in ganglia increased progressively the longer the animals received S6c. Treatment with the antioxidant tempol impaired S6c-induced hypertension and decreased superoxide levels in ganglia. Acute ganglion blockade lowered blood pressure more in S6c-treated rats than in vehicle-treated rats. Although plasma norepinephrine levels were not increased in S6c hypertension, surgical ablation of the celiac ganglion plexus, which provides most of the sympathetic innervation to the splanchnic organs, significantly attenuated hypertension development. The results suggest that S6c-induced hypertension is partially mediated by sympathoexcitation to the splanchnic organs driven by increased oxidative stress in prevertebral sympathetic ganglia.


2007 ◽  
Vol 292 (2) ◽  
pp. F861-F867 ◽  
Author(s):  
Melvin R. Hayden ◽  
Nazif A. Chowdhury ◽  
Shawna A. Cooper ◽  
Adam Whaley-Connell ◽  
Javad Habibi ◽  
...  

TG(mRen2)27 (Ren2) transgenic rats overexpress the mouse renin gene, with subsequent elevated tissue ANG II, hypertension, and nephropathy. The proximal tubule cell (PTC) is responsible for the reabsorption of 5–8 g of glomerular filtered albumin each day. Excess filtered albumin may contribute to PTC damage and tubulointerstitial disease. This investigation examined the role of ANG II-induced oxidative stress in PTC structural remodeling: whether such changes could be modified with in vivo treatment with ANG type 1 receptor (AT1R) blockade (valsartan) or SOD/catalase mimetic (tempol). Male Ren2 (6–7 wk old) and age-matched Sprague-Dawley rats were treated with valsartan (30 mg/kg), tempol (1 mmol/l), or placebo for 3 wk. Systolic blood pressure, albuminuria, N-acetyl-β-d-glucosaminidase, and kidney tissue malondialdehyde (MDA) were measured, and ×60,000 transmission electron microscopy images were used to assess PTC microvilli structure. There were significant differences in systolic blood pressure, albuminuria, lipid peroxidation (MDA and nitrotyrosine staining), and PTC structure in Ren2 vs. Sprague-Dawley rats (each P < 0.05). Increased mean diameter of PTC microvilli in the placebo-treated Ren2 rats ( P < 0.05) correlated strongly with albuminuria ( r2 = 0.83) and moderately with MDA ( r2 = 0.49), and there was an increase in the ratio of abnormal forms of microvilli in placebo-treated Ren2 rats compared with Sprague-Dawley control rats ( P < 0.05). AT1R blockade, but not tempol treatment, abrogated albuminuria and N-acetyl-β-d-glucosaminidase; both therapies corrected abnormalities in oxidative stress and PTC microvilli remodeling. These data indicate that PTC structural damage in the Ren2 rat is related to the oxidative stress response to ANG II and/or albuminuria.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Luciana C Veiras ◽  
Jiyang Han ◽  
Donna L Ralph ◽  
Alicia A McDonough

During Ang II hypertension distal tubule Na-Cl Cotransporter (NCC) abundance and its activating phosphorylation (NCCp), as well as Epithelial Na+ channels (ENaC) abundance and activating cleavage are increased 1.5-3 fold. Fasting plasma [K+] is significantly lower in Ang II hypertension (3.3 ± 0.1 mM) versus controls (4.0 ± 0.1 mM), likely secondary to ENaC stimulation driving K+ secretion. The aim of this study was to test the hypothesis that doubling dietary K+ intake during Ang II infusion will lower NCC and NCCp abundance to increase Na+ delivery to ENaC to drive K+ excretion and reduce blood pressure. Methods: Male Sprague Dawley rats (225-250 g; n= 7-9/group) were treated over 2 weeks: 1) Control 1% K diet fed (C1K); 2) Ang II infused (400 ng/kg/min) 1% K diet fed (A1K); or 3) Ang II infused 2% K diet fed (A2K). Blood pressure (BP) was determined by tail cuff, electrolytes by flame photometry and transporters’ abundance by immunoblot of cortical homogenates. Results: As previously reported, Ang II infusion increased systolic BP (from 132 ± 5 to 197 ± 4 mmHg), urine volume (UV, 2.4 fold), urine Na+ (UNaV, 1.3 fold), heart /body weight ratio (1.23 fold) and clearance of endogenous Li+ (CLi, measures fluid volume leaving the proximal tubule, from 0.26 ± 0.02 to 0.51 ± 0.01 ml/min/kg) all evidence for pressure natriuresis. A2K rats exhibited normal plasma [K+] (4.6 ± 0.1 mM, unfasted), doubled urine K+ (UKV, from 0.20 to 0.44 mmol/hr), and increased CLi (to 0.8 ± 0.1 ml/min/kg) but UV, UNaV, cardiac hypertrophy and BP were unchanged versus the A1K group. As expected, NCC, NCCpS71 and NCCpT53 abundance increased in the A1K group to 1.5 ± 0.1, 2.9 ± 0.5 and 2.8 ± 0.4 fold versus C1K, respectively. As predicted by our hypothesis, when dietary K+ was doubled (A2K), Ang II infusion did not activate NCC, NCCpS71 nor NCCpT53 (0.91 ± 0.04, 1.3 ± 0.1 and 1.6 ± 0.2 fold versus C1K, respectively). ENaC subunit abundance and cleavage increased 1.5 to 3 fold in both A1K and A2K groups; ROMK was unaffected by Ang II or dietary K. In conclusion, evidence is presented that stimulation of NCC during Ang II hypertension is secondary to K+ deficiency driven by ENaC stimulation since doubling dietary K+ prevents the activation. The results also indicate that elevation in BP is independent of NCC activation


2017 ◽  
Vol 35 (9) ◽  
pp. 1872-1880 ◽  
Author(s):  
Qing Zhu ◽  
Junping Hu ◽  
Lei Wang ◽  
Weili Wang ◽  
Zhengchao Wang ◽  
...  

1985 ◽  
Vol 59 (5) ◽  
pp. 1410-1415 ◽  
Author(s):  
K. D. Marcus ◽  
C. M. Tipton

The influence of endurance training on functional capacity [maximal O2 consumption (VO2 max)], caudal arterial blood pressure, and myocardial capillary density were investigated in normotensive rats and rats made hypertensive using the two-kidney one-clip approach (Goldblatt's hypertension). Male Sprague-Dawley rats were assigned to sham (N: 120–140 mmHg), moderately hypertensive (MH = 0.30-mm clips, 150–170 mmHg), or severely hypertensive (SH = 0.25-mm clips, 190–230 mmHg) groups. Rats designated to be runners (T) were exercised on a motor-driven treadmill equal to 50–70% of their VO2 max values for 8–12 wk. Compared with their nontrained (NT) controls, training was associated with significantly higher VO2 max values (12–15%) and muscle cytochrome-c oxidase activities (33–78%). Resting systolic blood pressure was not significantly changed in the N-and MH-T subgroups; however, it was 20–30 mmHg higher in the SH-T subgroup. Mean absolute heart weight for only the N-T group was significantly heavier than their NT controls. However, the mean predicted heart weights (heart wt = 0.639 X body wt of N-NT + 0.001 g) of the two SH groups were significantly higher than expected. The SH-T group had a lower (11%) subepicardial capillary density mean than its NT control and significantly fewer capillaries in the subendocardial region than the other five subgroups. It was concluded that moderate exercise training appeared to be detrimental to rats with severe hypertension because it increased resting blood pressure and decreased myocardial capillary density, even though it improved their functioning capacity.


Sign in / Sign up

Export Citation Format

Share Document