Adrenoceptor function in the bovine pulmonary circulation

1986 ◽  
Vol 64 (6) ◽  
pp. 689-693 ◽  
Author(s):  
Kevin J. Greenlees ◽  
Robert Gamble ◽  
Peter Eyre

The bovine pulmonary vascular response to α- and β-agonists was studied using an awake intact calf model. Pulmonary arterial pressure, pulmonary arterial wedge pressure, left atrial pressure, systemic arterial pressure, and cardiac output were measured in response to 3 min infusions of isoproterenol (β-agonist; 0.12, 0.24, 0.48, 0.9, and 1.8 μg∙kg−1∙min−1) and phenylephrine (α-agonist, 0.15, 0.30, 0.60, 1.15, and 2.30 μg∙kg−1∙min−1). Phenylephrine caused an increase in vascular resistance in the pulmonary arterial and venous compartments. The slope of the resistance in response to phenylephrine was greater in the pulmonary arterial than pulmonary venous circulation. Isoproterenol resulted in a dose-dependent decrease in vascular resistance in the pulmonary arteries and veins. The vascular resistance was decreased to the same level in the pulmonary arteries and veins although the arteries showed a greater percent change. In addition, isoproterenol infusion resulted in a transient decrease in arterial pH and increase in values for packed cell volume and haemoglobin.

2007 ◽  
Vol 293 (5) ◽  
pp. L1306-L1313 ◽  
Author(s):  
Jasdeep S. Dhaliwal ◽  
David B. Casey ◽  
Anthony J. Greco ◽  
Adeleke M. Badejo ◽  
Thomas B. Gallen ◽  
...  

The small GTP-binding protein and its downstream effector Rho kinase play an important role in the regulation of vasoconstrictor tone. Rho kinase activation maintains increased pulmonary vascular tone and mediates the vasoconstrictor response to nitric oxide (NO) synthesis inhibition in chronically hypoxic rats and in the ovine fetal lung. However, the role of Rho kinase in mediating pulmonary vasoconstriction after NO synthesis inhibition has not been examined in the intact rat. To address this question, cardiovascular responses to the Rho kinase inhibitor fasudil were studied at baseline and after administration of an NO synthesis inhibitor. In the intact rat, intravenous injections of fasudil cause dose-dependent decreases in systemic arterial pressure, small decreases in pulmonary arterial pressure, and increases in cardiac output. l-NAME caused a significant increase in pulmonary and systemic arterial pressures and a decrease in cardiac output. The intravenous injections of fasudil after l-NAME caused dose-dependent decreases in pulmonary and systemic arterial pressure and increases in cardiac output, and the percent decreases in pulmonary arterial pressure in response to the lower doses of fasudil were greater than decreases in systemic arterial pressure. The Ca++ entry blocker isradipine also decreased pulmonary and systemic arterial pressure in l-NAME-treated rats. Infusion of sodium nitroprusside restored pulmonary arterial pressure to baseline values after administration of l-NAME. These data provide evidence in support of the hypothesis that increases in pulmonary and systemic vascular resistance following l-NAME treatment are mediated by Rho kinase and Ca++ entry through L-type channels, and that responses to l-NAME can be reversed by an NO donor.


1990 ◽  
Vol 69 (5) ◽  
pp. 1836-1842 ◽  
Author(s):  
J. R. Fineman ◽  
M. R. Crowley ◽  
S. J. Soifer

We investigated the effects of infusions of ATP-MgCl2 on the circulation in 11 spontaneously breathing newborn lambs during pulmonary hypertension induced either by the infusion of U-46619, a thromboxane A2 mimetic, or by hypoxia. During pulmonary hypertension induced by U-46619, ATP-MgCl2 (0.01-1.0 mg.kg-1.min-1) caused a significant dose-dependent decrease in pulmonary arterial pressure (12.4-40.7%, P less than 0.05), while systemic arterial pressure decreased only at the highest doses (P less than 0.05). Left atrial infusions of ATP-MgCl2 caused systemic hypotension without decreasing pulmonary arterial pressure. During hypoxia-induced pulmonary hypertension, ATP-MgCl2 caused a similar significant dose-dependent decrease in pulmonary arterial pressure (12.0-41.1%, P less than 0.05), while systemic arterial pressure decreased only at high doses (P less than 0.05). Regression analysis showed selectivity of the vasodilating effects of ATP-MgCl2 for the pulmonary circulation during pulmonary hypertension induced either by U-46619 or hypoxia. ATP-MgCl2 is a potent vasodilator with a rapid metabolism that allows for selective vasodilation of the vascular bed first encountered (pulmonary or systemic). We conclude that infusions of ATP-MgCl2 may be clinically useful in the treatment of children with pulmonary hypertension.


1995 ◽  
Vol 269 (4) ◽  
pp. R943-R947
Author(s):  
Y. Kikuchi ◽  
H. Nakazawa ◽  
D. L. Traber

We developed a chronic lung fistula that drains only the left lung, allowing for evaluation of injury in a single lung. To remove lymph drainage from the right lung into the caudal mediastinal lymph node, the right lower pulmonary ligament was severed. Pneumatic occluders were placed on the left pulmonary arteries and veins. To ensure that lymph drained from only the left lung, we increased the right pulmonary arterial pressure (RPAP) from 21.2 +/- 0.5 to 36.5 +/- 0.6 mmHg. The left pulmonary arterial pressure (LPAP) was kept at wedge pressure level for 1 h by inflating pneumatic occluders. Lymph flow from the left lung fistula was stable during this occlusion. Six hours after recovery was increased the LPAP from a baseline level of 19.1 +/- 1.0 to 36.4 +/- 0.9 mmHg and the RPAP from 21.2 +/- 0.5 to 38.0 +/- 0.8 mmHg for 2 h by inflating the pneumatic occluders on the left and right pulmonary veins. Lymph flow increased from 5.3 +/- 1.0 to 28.0 +/- 2.9 ml/h. Reflection coefficient was calculated at 0.80 +/- 0.02.


1994 ◽  
Vol 76 (3) ◽  
pp. 1350-1355 ◽  
Author(s):  
J. A. Romand ◽  
M. R. Pinsky ◽  
L. Firestone ◽  
H. A. Zar ◽  
J. R. Lancaster

Nitric oxide (NO) inhaled during a hypoxia-induced increase in pulmonary vasomotor tone decreases pulmonary arterial pressure (Ppa). We conducted this study to better characterize the hemodynamic effects induced by NO inhalation during hypoxic pulmonary vasoconstriction in 11 anesthetized ventilated dogs. Arterial and venous systemic and pulmonary pressures and aortic flow probe-derived cardiac output were recorded, and nitrosylhemoglobin (NO-Hb) and methemoglobin (MetHb) were measured. The effects of 5 min of NO inhalation at 0, 17, 28, 47, and 0 ppm during hyperoxia (inspiratory fraction of O2 = 0.5) and hypoxia (inspiratory fraction of O2 = 0.16) were observed. NO inhalation has no measurable effects during hyperoxia. Hypoxia induced an increase in Ppa that reached plateau levels after 5 min. Exposure to 28 and 47 ppm NO induced an immediate (< 30 s) decrease in Ppa and calculated pulmonary vascular resistance (P < 0.05 each) but did not return either to baseline hyperoxic values. Increasing the concentration of NO to 74 and 145 ppm in two dogs during hypoxia did not induce any further decreases in Ppa. Reversing hypoxia while NO remained at 47 ppm further decreased Ppa and pulmonary vascular resistance to baseline values. NO inhalation did not induce decreases in systemic arterial pressure. MetHb remained low, and NO-Hb was unmeasurable. We concluded that NO inhalation only partially reversed hypoxia-induced increases in pulmonary vasomotor tone in this canine model. These effects are immediate and selective to the pulmonary circulation.


1988 ◽  
Vol 65 (5) ◽  
pp. 1975-1983 ◽  
Author(s):  
S. Adnot ◽  
P. E. Chabrier ◽  
C. Brun-Buisson ◽  
I. Viossat ◽  
P. Braquet

The influence of endogenous and exogenous atrial natriuretic factor (ANF) on pulmonary hemodynamics was investigated in anesthetized pigs during both normoxia and hypoxia. Continuous hypoxic ventilation with 11% O2 was associated with a uniform but transient increase of plasma immunoreactive (ir) ANF that peaked at 15 min. Plasma irANF was inversely related to pulmonary arterial pressure (Ppa; r = -0.66, P less than 0.01) and pulmonary vascular resistance (PVR; r = -0.56, P less than 0.05) at 30 min of hypoxia in 14 animals; no such relationship was found during normoxia. ANF infusion after 60 min of hypoxia in seven pigs reduced the 156 +/- 20% increase in PVR to 124 +/- 18% (P less than 0.01) at 0.01 microgram.kg-1.min-1 and to 101 +/- 15% (P less than 0.001) at 0.05 microgram.kg-1.min-1. Cardiac output (CO) and systemic arterial pressure (Psa) remained unchanged, whereas mean Ppa decreased from 25.5 +/- 1.5 to 20.5 +/- 15 mmHg (P less than 0.001) and plasma irANF increased two- to nine-fold. ANF infused at 0.1 microgram.kg-1.min-1 (resulting in a 50-fold plasma irANF increase) decreased Psa (-14%) and reduced CO (-10%); systemic vascular resistance (SVR) was not changed, nor was a further decrease in PVR induced. No change in PVR or SVR occurred in normoxic animals at any ANF infusion rate. These results suggest that ANF may act as an endogenous pulmonary vasodilator that could modulate the pulmonary pressor response to hypoxia.


2003 ◽  
Vol 285 (5) ◽  
pp. H2125-H2131 ◽  
Author(s):  
Noritoshi Nagaya ◽  
Hiroyuki Okumura ◽  
Masaaki Uematsu ◽  
Wataru Shimizu ◽  
Fumiaki Ono ◽  
...  

Adrenomedullin (AM) is a potent vasodilator peptide. We investigated whether inhalation of aerosolized AM ameliorates monocrotaline (MCT)-induced pulmonary hypertension in rats. Male Wistar rats given MCT (MCT rats) were assigned to receive repeated inhalation of AM ( n = 8) or 0.9% saline ( n = 8). AM (5 μg/kg) or saline was inhaled as an aerosol using an ultrasonic nebulizer for 30 min four times a day. After 3 wk of inhalation therapy, mean pulmonary arterial pressure and total pulmonary resistance were markedly lower in rats treated with AM than in those given saline [mean pulmonary arterial pressure: 22 ± 2 vs. 35 ± 1 mmHg (–37%); total pulmonary resistance: 0.048 ± 0.004 vs. 0.104 ± 0.006 mmHg · ml–1 · min–1 · kg–1 (–54%), both P < 0.01]. Neither systemic arterial pressure nor heart rate was altered. Inhalation of AM significantly attenuated the increase in medial wall thickness of peripheral pulmonary arteries in MCT rats. Kaplan-Meier survival curves demonstrated that MCT rats treated with aerosolized AM had a significantly higher survival rate than those given saline (70% vs. 10% 6-wk survival, log-rank test, P < 0.01). In conclusion, repeated inhalation of AM inhibited MCT-induced pulmonary hypertension without systemic hypotension and thereby improved survival in MCT rats.


1988 ◽  
Vol 65 (6) ◽  
pp. 2459-2467 ◽  
Author(s):  
E. C. Orton ◽  
J. T. Reeves ◽  
K. R. Stenmark

To evaluate pulmonary vasodilation in a structurally altered pulmonary vascular bed, we gave endothelium-dependent (acetylcholine) and endothelium-independent [sodium nitroprusside, prostaglandin I2 (PGI2)] vasodilators in vivo and to isolated lobar pulmonary arteries from neonatal calves with severe pulmonary hypertension. Acetylcholine, administered by pulmonary artery infusion, decreased pulmonary arterial pressure from 120 +/- 7 to 71 +/- 6 mmHg and total pulmonary resistance from 29.4 +/- 2.6 to 10.4 +/- 0.9 mmHg.l-1.min without changing systemic arterial pressure (90 +/- 5 mmHg). Although both sodium nitroprusside and PGI2 lowered pulmonary arterial pressure to 86 +/- 4 and 96 +/- 4 mmHg, respectively, they also decreased systemic arterial pressure to 65 +/- 4 and 74 +/- 3 mmHg, respectively. Neither sodium nitroprusside nor PGI2 was as effective as acetylcholine at lowering total pulmonary resistance (18.0 +/- 3.6 and 19.1 +/- 2.2 mmHg.l-1.min, respectively). Right-to-left cardiac shunt through the foramen ovale was decreased by acetylcholine from 1.6 +/- 0.4 to 0.1 +/- 0.2 l/min but was not changed by sodium nitroprusside or PGI2. Isolated lobar pulmonary arteries from pulmonary hypertensive calves did not relax in response to acetylcholine, whereas isolated pulmonary arteries from age-matched control calves did relax in response to acetylcholine. Control and pulmonary hypertensive lobar pulmonary arteries relaxed equally well in response to sodium nitroprusside. We concluded that acetylcholine vasodilation was impaired in vitro in isolated lobar pulmonary arteries but was enhanced in vivo in resistance pulmonary arteries in neonatal calves with pulmonary hypertension.


1970 ◽  
Vol 39 (1) ◽  
pp. 123-145 ◽  
Author(s):  
D. A. Warrell ◽  
Helen M. Pope ◽  
E. H. O. Parry ◽  
P. L. Perine ◽  
A.D.M. Bryceson

1. Nineteen patients with louse-borne relapsing fever were studied in Addis Abeba (altitude 2285 m). 2. Following treatment with tetracycline a febrile Jarisch—Herxheimer-like reaction developed which showed the phases described in artificially-induced endotoxin fever. 3. During the chill phase body temperature, metabolic rate and pulmonary ventilation increased. Despite alveolar hyperventilation pulmonary venous admixture was high. Cardiac output, heart rate and systemic arterial pressure increased but pulmonary arterial pressure decreased. 4. During the flush phase systemic arterial pressure fell and remained low for many hours due to reduced vascular resistance, but pulmonary arterial pressure and inflow resistance increased. Small increases in glucose, lactate, and pyruvate concentrations were prevented by inhaling oxygen. 5. Stimulation of metabolic rate, ventilation and cardiac output during the reaction was not due simply to increased body temperature, hypoxia, or acidosis but was probably attributable to spirochaetal endotoxin. 6. Limitation of pulmonary oxygen diffusion may have been responsible for the impaired pulmonary oxygen uptake in these patients. 7. During the prolonged flush phase a greatly increased cardiac output is necessary to maintain systemic arterial pressure because of the very low vascular resistance. Prevention of extracellular fluid volume depletion, early detection and prompt treatment of cardiac failure and oxygen therapy may reduce fatalities during this critical period but hydrocortisone in large doses failed to reduce the severity of the reaction.


1991 ◽  
Vol 70 (2) ◽  
pp. 567-574 ◽  
Author(s):  
B. Raffestin ◽  
S. Adnot ◽  
S. Eddahibi ◽  
I. Macquin-Mavier ◽  
P. Braquet ◽  
...  

This study investigated the pulmonary vascular response to endothelin (ET) in rats. In conscious rats, an incremental intravenous bolus of ET-1 (100-1,000 pM) caused, after an initial drop in systemic arterial pressure (Psa), a secondary dose-dependent increase of Psa concomitant with a decrease of cardiac output (CO) and heart rate (HR). Pulmonary arterial pressure (Ppa) remained unchanged, and pulmonary vascular resistance (PVR) increased significantly only after 1,000 pM (+ 40.0 +/- 10.4 at 15 min). Meclofenamate (6 mg/kg iv) did not alter hemodynamic response to ET (300 pM). After autonomic blockade with hexamethonium (6 mg/kg iv) plus atropine (0.75 mg/kg iv), bradycardia response to ET (300 pM) was blocked, but CO decreased, systemic vascular resistance increased, and PVR remained unchanged as in controls. In anesthetized ventilated rats, bolus injections of ET (10-1,000 pM) induced a transient dose-related decrease in compliance (-10.9 +/- 1.8% after 1,000 pM) but no change of conductance. In isolated lungs, Ppa increased at doses greater than 100 pM, and edema developed in response to 1,000 pM ET. The rise of Ppa in response to 300 pM was not altered by meclofenamate (3.2 x 10(-6) M) but was potentiated by inhibitors of endothelium-derived relaxing factor(s) (EDRF), methylene blue (10(-4) M), pyrogallol (3 x 10(-5) M), and NG-monomethyl-L-arginine (6 x 10(-4) M) (3.9 +/- 0.3, 4.6 +/- 0.5, and 5.9 +/- 0.3 mmHg, respectively, compared with 1.5 +/- 0.5 mmHg in control lungs). These results suggest that circulating ET is a more potent constrictor of the systemic circulation than of the pulmonary vascular bed.(ABSTRACT TRUNCATED AT 250 WORDS)


1981 ◽  
Vol 59 (5) ◽  
pp. 493-499 ◽  
Author(s):  
J. R. Ledsome ◽  
W. O. Kan ◽  
C. P. Bolter

In chloralose-anaesthetized dogs a right heart bypass was established and the isolated main pulmonary arteries were perfused at controlled pressure and temperature. Increasing pulmonary arterial pressure by 20–60 mmHg (1 mmHg = 133.322 Pa) increased systemic vascular resistance and respiratory activity. Decreasing the temperature of the pulmonary arterial perfusate over the range 37 – 31 °C decreased systemic arterial pressure and respiratory activity. Increasing the temperature over the range 37–41 °C had the opposite effects. The decreases in systemic arterial pressure and respiratory activity in response to a decrease in temperature of the pulmonary arterial perfusate were present at low (20 mmHg) or high (80 mmHg) pulmonary arterial pressures. All responses to changing the pressure or temperature of the pulmonary arterial perfusate were prevented by cutting the vagosympathetic nerves in the neck. It is concluded that there are receptors, lying in or close to the pulmonary arterial walls, that in this preparation are tonically active. Their discharge is affected by changes of ± 2 degrees in pulmonary arterial temperature.


Sign in / Sign up

Export Citation Format

Share Document