Atrial natriuretic factor attenuates the pulmonary pressor response to hypoxia

1988 ◽  
Vol 65 (5) ◽  
pp. 1975-1983 ◽  
Author(s):  
S. Adnot ◽  
P. E. Chabrier ◽  
C. Brun-Buisson ◽  
I. Viossat ◽  
P. Braquet

The influence of endogenous and exogenous atrial natriuretic factor (ANF) on pulmonary hemodynamics was investigated in anesthetized pigs during both normoxia and hypoxia. Continuous hypoxic ventilation with 11% O2 was associated with a uniform but transient increase of plasma immunoreactive (ir) ANF that peaked at 15 min. Plasma irANF was inversely related to pulmonary arterial pressure (Ppa; r = -0.66, P less than 0.01) and pulmonary vascular resistance (PVR; r = -0.56, P less than 0.05) at 30 min of hypoxia in 14 animals; no such relationship was found during normoxia. ANF infusion after 60 min of hypoxia in seven pigs reduced the 156 +/- 20% increase in PVR to 124 +/- 18% (P less than 0.01) at 0.01 microgram.kg-1.min-1 and to 101 +/- 15% (P less than 0.001) at 0.05 microgram.kg-1.min-1. Cardiac output (CO) and systemic arterial pressure (Psa) remained unchanged, whereas mean Ppa decreased from 25.5 +/- 1.5 to 20.5 +/- 15 mmHg (P less than 0.001) and plasma irANF increased two- to nine-fold. ANF infused at 0.1 microgram.kg-1.min-1 (resulting in a 50-fold plasma irANF increase) decreased Psa (-14%) and reduced CO (-10%); systemic vascular resistance (SVR) was not changed, nor was a further decrease in PVR induced. No change in PVR or SVR occurred in normoxic animals at any ANF infusion rate. These results suggest that ANF may act as an endogenous pulmonary vasodilator that could modulate the pulmonary pressor response to hypoxia.

1994 ◽  
Vol 76 (3) ◽  
pp. 1350-1355 ◽  
Author(s):  
J. A. Romand ◽  
M. R. Pinsky ◽  
L. Firestone ◽  
H. A. Zar ◽  
J. R. Lancaster

Nitric oxide (NO) inhaled during a hypoxia-induced increase in pulmonary vasomotor tone decreases pulmonary arterial pressure (Ppa). We conducted this study to better characterize the hemodynamic effects induced by NO inhalation during hypoxic pulmonary vasoconstriction in 11 anesthetized ventilated dogs. Arterial and venous systemic and pulmonary pressures and aortic flow probe-derived cardiac output were recorded, and nitrosylhemoglobin (NO-Hb) and methemoglobin (MetHb) were measured. The effects of 5 min of NO inhalation at 0, 17, 28, 47, and 0 ppm during hyperoxia (inspiratory fraction of O2 = 0.5) and hypoxia (inspiratory fraction of O2 = 0.16) were observed. NO inhalation has no measurable effects during hyperoxia. Hypoxia induced an increase in Ppa that reached plateau levels after 5 min. Exposure to 28 and 47 ppm NO induced an immediate (< 30 s) decrease in Ppa and calculated pulmonary vascular resistance (P < 0.05 each) but did not return either to baseline hyperoxic values. Increasing the concentration of NO to 74 and 145 ppm in two dogs during hypoxia did not induce any further decreases in Ppa. Reversing hypoxia while NO remained at 47 ppm further decreased Ppa and pulmonary vascular resistance to baseline values. NO inhalation did not induce decreases in systemic arterial pressure. MetHb remained low, and NO-Hb was unmeasurable. We concluded that NO inhalation only partially reversed hypoxia-induced increases in pulmonary vasomotor tone in this canine model. These effects are immediate and selective to the pulmonary circulation.


2007 ◽  
Vol 293 (5) ◽  
pp. L1306-L1313 ◽  
Author(s):  
Jasdeep S. Dhaliwal ◽  
David B. Casey ◽  
Anthony J. Greco ◽  
Adeleke M. Badejo ◽  
Thomas B. Gallen ◽  
...  

The small GTP-binding protein and its downstream effector Rho kinase play an important role in the regulation of vasoconstrictor tone. Rho kinase activation maintains increased pulmonary vascular tone and mediates the vasoconstrictor response to nitric oxide (NO) synthesis inhibition in chronically hypoxic rats and in the ovine fetal lung. However, the role of Rho kinase in mediating pulmonary vasoconstriction after NO synthesis inhibition has not been examined in the intact rat. To address this question, cardiovascular responses to the Rho kinase inhibitor fasudil were studied at baseline and after administration of an NO synthesis inhibitor. In the intact rat, intravenous injections of fasudil cause dose-dependent decreases in systemic arterial pressure, small decreases in pulmonary arterial pressure, and increases in cardiac output. l-NAME caused a significant increase in pulmonary and systemic arterial pressures and a decrease in cardiac output. The intravenous injections of fasudil after l-NAME caused dose-dependent decreases in pulmonary and systemic arterial pressure and increases in cardiac output, and the percent decreases in pulmonary arterial pressure in response to the lower doses of fasudil were greater than decreases in systemic arterial pressure. The Ca++ entry blocker isradipine also decreased pulmonary and systemic arterial pressure in l-NAME-treated rats. Infusion of sodium nitroprusside restored pulmonary arterial pressure to baseline values after administration of l-NAME. These data provide evidence in support of the hypothesis that increases in pulmonary and systemic vascular resistance following l-NAME treatment are mediated by Rho kinase and Ca++ entry through L-type channels, and that responses to l-NAME can be reversed by an NO donor.


1986 ◽  
Vol 251 (3) ◽  
pp. R639-R642 ◽  
Author(s):  
D. W. Duff ◽  
K. R. Olson

Dorsal aortic pressure (DAP), urine flow rate, and urinary K+, Na+, and Cl- were monitored in chronically catheterized unanesthetized rainbow trout before and after injection of saline, tissue extracts, or synthetic (rat, Ile-26) atrial natriuretic factor (ANF). Synthetic ANF (1.0 and 10.0 micrograms/kg body wt) and extracts from trout atria and ventricles increased DAP, urine flow rate, and electrolyte excretion. Saline, skeletal muscle extracts, and 0.1 microgram/kg body wt synthetic ANF had no effect on DAP and only minor effects on renal water and ion excretion. The slow-onset long-duration pressor response to ANF and heart extracts contrasted with a rapid short-acting pressor effect of epinephrine. Synthetic ANF (10 micrograms/kg body wt) and ventricular extracts produced marked increases in Na+ and Cl- excretion but only a mild diuresis. Much of the increase in urine flow rate appears to be due to solvent injection. These results show that trout hearts contain an ANF-like material and that mammalian and piscine ANF produce hemodynamic and renal effects upon intra-arterial injection.


1986 ◽  
Vol 251 (5) ◽  
pp. F795-F801 ◽  
Author(s):  
D. M. Pollock ◽  
W. J. Arendshorst

Clearance experiments were conducted to determine the effects of atrial natriuretic factor (ANF) on renal hemodynamics and excretory function in anesthetized, euvolemic Munich-Wistar rats. Intra-aortic infusions of synthetic ANF (28 amino acids) at 7.5 and 15 micrograms X kg-1 X h-1 produced dose-related increases in absolute and fractional sodium and water excretion under steady-state conditions; renal blood flow (RBF) was unchanged, whereas mean arterial pressure significantly decreased but remained within the autoregulatory range. An apparent maximal response was elicited by 15 micrograms X kg-1 X h-1 as 30 micrograms X kg-1 X h-1 produced a similar increase in urine flow and sodium excretion. ANF infusion at 30 micrograms X kg-1 X h-1 produced no transient or sustained changes in RBF (electromagnetic flow probe). Renal vascular resistance was significantly decreased in parallel with reductions in arterial pressure; ANF-induced changes in resistance can be explained by autoregulatory adjustments. In another series, intra-aortic vs. intravenous infusion of ANF (7.5 micrograms X kg-1 X h-1) were compared in the same animal; the diuretic and natriuretic response to ANF was similar with the two routes of administration. We observed no consistent changes in glomerular filtration rate (GFR). Our results indicate that the diuretic and natriuretic effects of synthetic ANF in the rat do not require an increase in RBF or GFR.


1989 ◽  
Vol 257 (3) ◽  
pp. R580-R587 ◽  
Author(s):  
R. A. Brace ◽  
L. A. Bayer ◽  
C. Y. Cheung

The purpose of this study was to determine the effects of atrial natriuretic factor (ANF) in the fetus and to explore the interactions among the fetal cardiovascular, endocrine, and fluid responses to ANF. In 12 chronically catheterized fetal sheep at 130 +/- 1 (SE) days gestation, ANF was infused intravenously for 30 min at 14-300 ng.min-1.kg-1. Fetal arterial plasma ANF concentration increased by 174 to 5,410 pg/ml from a preinfusion value of 163 +/- 13 pg/ml. The clearance of ANF from the circulation was 122 +/- 28 ml.min-1.kg-1 and the half-life was 0.46 +/- 0.07 min. When plasma ANF was greater than 2,000 pg/ml, fetal arterial pressure decreased, venous pressure increased transiently, and heart rate was unchanged. Plasma arginine vasopressin (AVP) concentration and plasma renin activity (PRA) increased with high ANF concentrations, while norepinephrine concentrations were unaffected. Fetal blood volume decreased in all fetuses, and urine flow increased significantly but not in every fetus. Blood and urine osmolalities did not change. On terminating the infusion, venous pressure and urine flow decreased below control, while blood volume and arterial pressure remained reduced. Plasma AVP concentration increased further, and this was accompanied by an increase in urine osmolality. Thus the most consistent effect of ANF in the fetus was a reduction in blood volume, which was independent of urine flow changes. Other cardiovascular, endocrine, and fluid responses to ANF as well as interactions among them appeared to occur largely at supraphysiological concentrations and may be secondary to the changes in blood volume.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 253 (2) ◽  
pp. F234-F238
Author(s):  
A. A. Seymour ◽  
S. G. Smith ◽  
E. K. Mazack

Synthetic atrial natriuretic factor (ANF 101-126) was infused at 1, 5, 25, and 125 pmol X kg-1 X min-1 into the renal artery of anesthetized, one-kidney dogs. During administration of 25 and 125 pmol X kg-1 X min-1 of ANF 101-126, fractional sodium excretion (FENa) rose from 1.4 +/- 0.3 to 6.6 +/- 1.1 and 5.6 +/- 1.3% when renal perfusion pressure (RPP) was at its basal level (112 +/- 5 mmHg). When base-line RPP was lowered to 101 +/- 5 mmHg by tightening a suprarenal aortic constriction, the same doses raised FENa to only 5.6 +/- 1.6 and 5.1 +/- 1.6%. A larger reduction of beginning RPP to 82 +/- 4 mmHg suppressed the natriuretic responses to 25 and 125 pmol X kg-1 X min-1 of ANF 101-126 to only 1.4 +/- 0.8 and 0.8 +/- 0.3%, respectively.During the peak natriuretic dose of 25 pmol X kg-1 X min-1, renal vascular resistance (RVR) fell from 0.88 +/- 0.10 to 0.68 +/- 0.07, from 0.78 +/- 0.10 to 0.68 +/- 0.12, and from 0.60 +/- 0.06 to 0.61 +/- 0.06 mmHg X ml-1 X min-1 at RPP = RPP = 112, 101, and 82 mmHg, respectively. ANF 101-126 did not affect glomerular filtration rate (GFR) at any level of RPP tested. In conclusion, the natriuretic responses to ANF 101-126 occurred without changes in GFR and were modulated by the prevailing levels of renal perfusion pressure and renal vascular resistance.


2008 ◽  
Vol 295 (5) ◽  
pp. L828-L836 ◽  
Author(s):  
Adeleke M. Badejo ◽  
Jasdeep S. Dhaliwal ◽  
David B. Casey ◽  
Thomas B. Gallen ◽  
Anthony J. Greco ◽  
...  

The small GTP-binding protein Rho and its downstream effector, Rho-kinase, are important regulators of vasoconstrictor tone. Rho-kinase is upregulated in experimental models of pulmonary hypertension, and Rho-kinase inhibitors decrease pulmonary arterial pressure in rodents with monocrotaline and chronic hypoxia-induced pulmonary hypertension. However, less is known about responses to fasudil when pulmonary vascular resistance is elevated on an acute basis by vasoconstrictor agents and ventilatory hypoxia. In the present study, intravenous injections of fasudil reversed pulmonary hypertensive responses to intravenous infusion of the thromboxane receptor agonist, U-46619 and ventilation with a 10% O2 gas mixture and inhibited pulmonary vasoconstrictor responses to intravenous injections of angiotensin II, BAY K 8644, and U-46619 without prior exposure to agonists, which can upregulate Rho-kinase activity. The calcium channel blocker isradipine and fasudil had similar effects and in small doses had additive effects in blunting vasoconstrictor responses, suggesting parallel and series mechanisms in the lung. When pulmonary vascular resistance was increased with U-46619, fasudil produced similar decreases in pulmonary and systemic arterial pressure, whereas isradipine produced greater decreases in systemic arterial pressure. The hypoxic pressor response was enhanced by 5–10 mg/kg iv nitro-l-arginine methyl ester (l-NAME), and fasudil or isradipine reversed the pulmonary hypertensive response to hypoxia in control and in l-NAME-treated animals, suggesting that the response is mediated by Rho-kinase and L-type Ca2+ channels. These results suggest that Rho-kinase is constitutively active in regulating baseline tone and vasoconstrictor responses in the lung under physiological conditions and that Rho-kinase inhibition attenuates pulmonary vasoconstrictor responses to agents that act by different mechanisms without prior exposure to the agonist.


1986 ◽  
Vol 64 (6) ◽  
pp. 689-693 ◽  
Author(s):  
Kevin J. Greenlees ◽  
Robert Gamble ◽  
Peter Eyre

The bovine pulmonary vascular response to α- and β-agonists was studied using an awake intact calf model. Pulmonary arterial pressure, pulmonary arterial wedge pressure, left atrial pressure, systemic arterial pressure, and cardiac output were measured in response to 3 min infusions of isoproterenol (β-agonist; 0.12, 0.24, 0.48, 0.9, and 1.8 μg∙kg−1∙min−1) and phenylephrine (α-agonist, 0.15, 0.30, 0.60, 1.15, and 2.30 μg∙kg−1∙min−1). Phenylephrine caused an increase in vascular resistance in the pulmonary arterial and venous compartments. The slope of the resistance in response to phenylephrine was greater in the pulmonary arterial than pulmonary venous circulation. Isoproterenol resulted in a dose-dependent decrease in vascular resistance in the pulmonary arteries and veins. The vascular resistance was decreased to the same level in the pulmonary arteries and veins although the arteries showed a greater percent change. In addition, isoproterenol infusion resulted in a transient decrease in arterial pH and increase in values for packed cell volume and haemoglobin.


1989 ◽  
Vol 67 (6) ◽  
pp. 2269-2275 ◽  
Author(s):  
I. Cigarini ◽  
S. Adnot ◽  
P. E. Chabrier ◽  
I. Viossat ◽  
P. Braquet ◽  
...  

The objective of this study was to determine the direct actions of atrial natriuretic factor (ANF) on the pulmonary vascular bed and to compare these actions with those of sodium nitroprusside (SNP). The responses to incremental infusion rates of 1, 5, 10, and 50 ng.kg-1.min-1 synthetic human ANF and to 1-2 micrograms.kg-1.min-1 SNP were examined in the in situ autoperfused lung lobe of open-chest anesthetized pigs under conditions of normal and elevated pulmonary vascular tone. During basal conditions, ANF and SNP caused small but significant reductions in pulmonary artery pressure (Ppa) and pulmonary venous pressure (Ppv) with no change in lobar vascular resistance (LVR). When pulmonary vascular tone was increased by prostaglandin F2 alpha (20 micrograms/min), ANF infusion at doses greater than 1 ng.kg-1.min-1 decreased Ppa and LVR in a dose-related fashion. Infusion of 50 ng.kg-1.min-1 ANF and of 2 micrograms.kg-1.min-1 SNP maximally decreased Ppa, from 33 +/- 3 to 20 +/- 2 mmHg (P less than 0.001) and from 31 +/- 4 to 18 +/- 1 mmHg (P less than 0.001), respectively. At these doses, ANF reduced systemic arterial pressure by only 11.5 +/- 3% compared with 34 +/- 4% decreased with SNP (P less than 0.001). The results indicate that ANF, similarly to SNP, exerts a direct potent vasodilator activity in the porcine pulmonary vascular bed, which is dependent on the existing level of vasoconstrictor tone.


Sign in / Sign up

Export Citation Format

Share Document