Avoidable obstacles to colonization in classical biological control of insects

1985 ◽  
Vol 63 (4) ◽  
pp. 743-747 ◽  
Author(s):  
Bryan P. Beirne

Most classical biological control attempts worldwide against pest insects have failed to meet the objective of solving the pest problems permanently. The dominant cause was failure by introduced agents to colonize. Most failures to colonize can be attributed to procedures that were detrimental to the numbers or health or the target-finding or field survival abilities of newly released agents. Administrative reactions to the low success rate, poor cost/benefit data, and overselling of the method were basically responsible for those procedures. As ways of avoiding such procedures exist, it is feasible to make colonization a probability. This should substantially improve the chances of control being successful, enable past failures to be reopened, and expand the scope of classical biological control.

1995 ◽  
Vol 73 (10) ◽  
pp. 1777-1790 ◽  
Author(s):  
A. R. Clarke ◽  
G. H. Walter

The classical biological control technique of introducing two or more populations of the same species of beneficial agent to increase the genetic diversity of that species (and so increase the chances of achieving a successful project) is reviewed. From standard literature sources, all cases of multiple introductions of conspecific populations against insect targets were listed and the effect of subsequent introductions on the outcome of the project was recorded. Of 178 projects identified, involving 417 separate importations, only 11 (6.2%) were successful through a second or later importation of the same morphologically defined species of beneficial agent. Of these, five involved host-related "strains" that are likely to be cryptic species, so the success rate for the introduction of conspecific populations falls to 3.4%. The possibility that some (or even all) of the other six cases also involved cryptic species awaits investigation. Our analysis demonstrates that introducing two or more populations of the same species is less likely to result in enhanced success than if other species of natural enemies are sought for "normal" classical biological control (historical success rate 12–16%). In our discussion we focus on the genetic theory of species which underpins this area of applied biology and find that there is also no theoretical support for the continued introduction of strains.


2007 ◽  
Vol 363 (1492) ◽  
pp. 761-776 ◽  
Author(s):  
J.S Bale ◽  
J.C van Lenteren ◽  
F Bigler

The use of biological control for the management of pest insects pre-dates the modern pesticide era. The first major successes in biological control occurred with exotic pests controlled by natural enemy species collected from the country or area of origin of the pest (classical control). Augmentative control has been successfully applied against a range of open-field and greenhouse pests, and conservation biological control schemes have been developed with indigenous predators and parasitoids. The cost–benefit ratio for classical biological control is highly favourable (1 : 250) and for augmentative control is similar to that of insecticides (1 : 2–1 : 5), with much lower development costs. Over the past 120 years, more than 5000 introductions of approximately 2000 non-native control agents have been made against arthropod pests in 196 countries or islands with remarkably few environmental problems. Biological control is a key component of a ‘systems approach’ to integrated pest management, to counteract insecticide-resistant pests, withdrawal of chemicals and minimize the usage of pesticides. Current studies indicate that genetically modified insect-resistant Bt crops may have no adverse effects on the activity or function of predators or parasitoids used in biological control. The introduction of rational approaches for the environmental risk assessment of non-native control agents is an essential step in the wider application of biological control, but future success is strongly dependent on a greater level of investment in research and development by governments and related organizations that are committed to a reduced reliance on chemical control.


2007 ◽  
Author(s):  
Andrew E. Monroe ◽  
Corinne Zimmerman

EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
James P. Cuda ◽  
Patricia Prade ◽  
Carey R. Minteer-Killian

In the late 1970s, Brazilian peppertree, Schinus terebinthifolia Raddi (Sapindales: Anacardiaceae), was targeted for classical biological control in Florida because its invasive properties (see Host Plants) are consistent with escape from natural enemies (Williams 1954), and there are no native Schinus spp. in North America. The lack of native close relatives should minimize the risk of damage to non-target plants from introduced biological control agents (Pemberton 2000). [...]


Author(s):  
Fazila Yousuf ◽  
Peter A. Follett ◽  
Conrad P. D. T. Gillett ◽  
David Honsberger ◽  
Lourdes Chamorro ◽  
...  

AbstractPhymastichus coffea LaSalle (Hymenoptera:Eulophidae) is an adult endoparasitoid of the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera:Curculionidae:Scolytinae), which has been introduced in many coffee producing countries as a biological control agent. To determine the effectiveness of P. coffea against H. hampei and environmental safety for release in Hawaii, we investigated the host selection and parasitism response of adult females to 43 different species of Coleoptera, including 23 Scolytinae (six Hypothenemus species and 17 others), and four additional Curculionidae. Non-target testing included Hawaiian endemic, exotic and beneficial coleopteran species. Using a no-choice laboratory bioassay, we demonstrated that P. coffea was only able to parasitize the target host H. hampei and four other adventive species of Hypothenemus: H. obscurus, H. seriatus, H. birmanus and H. crudiae. Hypothenemus hampei had the highest parasitism rate and shortest parasitoid development time of the five parasitized Hypothenemus spp. Parasitism and parasitoid emergence decreased with decreasing phylogenetic relatedness of the Hypothenemus spp. to H. hampei, and the most distantly related species, H. eruditus, was not parasitized. These results suggest that the risk of harmful non-target impacts is low because there are no native species of Hypothenemus in Hawaii, and P. coffea could be safely introduced for classical biological control of H. hampei in Hawaii.


Sign in / Sign up

Export Citation Format

Share Document