nontarget effects
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 15)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 37 (3) ◽  
pp. 125-131
Author(s):  
Diann M. Crane ◽  
Carey A. Lamere ◽  
Roger D. Moon ◽  
Stephen A. Manweiler

ABSTRACT Larvicides that contain spinosad, a bacterial metabolite, are used to control mosquitoes in diverse aquatic habitats. These same habitats are home to other invertebrates, including Crustacea—fairy shrimp, isopods, and amphipods—and mollusks—fingernail clams and freshwater snails. A double-blind study evaluated the effects of Natular® G, a granular treatment containing spinosad, on spring Aedes spp. and nontarget invertebrates in vernal wetlands. Within 14 days after application, Natular G controlled larvae of spring Aedes by 53–84%, depending on species, but had no significant effects on numbers of fairy shrimp, fingernail clams, or freshwater snails. A second double-blind study evaluated effects on Coquillettidia perturbans and nontarget isopods and amphipods in cattail marshes. Treatment reduced emergence of Cq. perturbans by 25% but did not change numbers of isopods or amphipods. The 2 experiments indicate Natular G could be effective against spring Aedes in vernal wetlands, less so against Cq. perturbans in cattail marshes, and yet pose minimal risk to crustaceans and mollusks in either vernal wetlands or cattail marshes.


Author(s):  
Bethany L McGregor ◽  
Bryan V Giordano ◽  
Alfred E Runkel ◽  
Herbert N Nigg ◽  
H Lee Nigg ◽  
...  

Abstract Mosquito control districts in the United States are limited to two main classes of adulticides, pyrethroids and organophosphates, to control mosquitoes. Two adulticides used to control domestic mosquitoes are Fyfanon EW (malathion, organophosphate) and DeltaGard (deltamethrin, pyrethroid). While the effect of these pesticides on European honeybees (Apis mellifera L., Hymenoptera: Apidae) has been investigated, effects on native pollinators need additional research. The purpose of this study was to investigate the acute nontarget effects of these pesticides on Bombus impatiens Cresson (Hymenoptera: Apidae), a native North American bumble bee species, and compare these effects to wild and laboratory strains of mosquitoes (Aedes aegypti (L.) and Culex quinquefasciatus Say, Diptera: Culicidae) through field and laboratory assays. Bombus impatiens was found to be resistant to Fyfanon EW (x̅ = 6.7% mortality at 50-µg malathion per bottle) at levels that caused significant mortality to study mosquitoes (86.2 ≥ x̅ ≥ 100% mortality) in laboratory bottle bioassays. Comparatively, B. impatiens demonstrated greater mortality to DeltaGard (93.3%) at 2.5-µg deltamethrin/bottle than any mosquito colony assayed (14.1 ≥ x̅ ≥ 87.0% mortality). Only DeltaGard was tested in field applications. In the field, we observed acute effects of DeltaGard on mosquitoes and B. impatiens at 25- and 75-m distance from a truck-mounted ultra-low volume fogger, although treatment effects were not significant for B. impatiens. Additional wild-caught nontarget mortality to DeltaGard field trials was also evaluated. This study indicated that common mosquito control adulticides do cause nontarget mortality to B. impatiens but that impacts are variable depending on pesticide and further studies are needed.


2020 ◽  
Author(s):  
V C Cassidy ◽  
E P McCarty ◽  
C Asaro

Abstract The Nantucket pine tip moth (NPTM) [Rhyacionia frustrana (Comstock)], a native regeneration pest on young loblolly pines (Pinus taeda L.), negatively impacts pine growth. An emerging management approach is to apply systemic insecticides to seedlings to reduce NPTM damage. These systemic insecticide applications generally occur once, perhaps twice, during the first few years of loblolly pine growth. However, these applications could lead to unintended environmental consequences to nontarget organisms. The purpose of this study was to assess potential nontarget effects from four systemic insecticide applications by assessing ground-dwelling arthropod trap catch, with a focus on collembolan trap catch and genera richness. Loblolly seedlings (24 seedlings per plot) at three sites in southeast Georgia were treated with either chlorantraniliprole, dinotefuran, fipronil, or imidacloprid or left untreated as a control. Arthropods were collected with pitfall traps that were deployed for 5 d in July, August, and September 2019, 7–9 mo after treatment. Ground-dwelling arthropod trap catch, arthropod order trap catch, collembolan trap catch, and collembolan genera richness did not vary among insecticide treatments and the untreated control in this mid-term insecticide risk assessment. While no significant effects of insecticide treatment were observed, ground-dwelling arthropod trap catch, collembolan trap catch, and collembolan genera richness differed among collection times. This study was the first of its kind in a young pine stand setting and is an important first step to understanding risk in these settings. Information on nontarget risks of management practices informs growers of the level of environmental risk associated with systemic insecticides.


2020 ◽  
Vol 49 (6) ◽  
pp. 1327-1334
Author(s):  
Danielle G Lewis ◽  
Matthew A Cutulle ◽  
Rebecca A Schmidt-Jeffris ◽  
Carmen K Blubaugh

Abstract Organic vegetable farmers rely heavily on labor-intensive tillage for weed management, which adversely affects soil health and harms beneficial insects that consume crop pests and weed seeds. Using cover crop residues as a weed-suppressive mulch enables some reduction in tillage, and combining this tool with recently developed organic herbicides may further enhance weed suppression in vegetable production. However, organic herbicides may also adversely affect beneficial insects, and their nontarget effects are unknown. Here, we examine the combined impacts of cultural and chemical tools on weed cover while monitoring activity of beneficial epigeal insects and measuring rates of weed seed biological control to assess potential nontarget effects of organic herbicides. In a 2-yr experiment, we compared three cover crop mulch treatments and three organic herbicide treatments (capric/caprylic acid, corn gluten meal, and herbicide-free) in a reduced-tillage system. Organic herbicides led to no reductions in beneficial insect activity nor weed seed biocontrol. In both years, capric/caprylic acid herbicide and cover crop mulches reduced weed pressure relative to a fallow control treatment, whereas corn gluten meal had no effect. In year 2, a combination of cover crop mulch with organic herbicide had the greatest weed suppression relative to the fallow control. Integrated weed management is a perpetual challenge, but our results suggest that organic herbicides used in concert with cover crop mulch may enhance weed control and reduce the need for tillage, with limited collateral damage to natural enemies.


2020 ◽  
Vol 113 (5) ◽  
pp. 2197-2212 ◽  
Author(s):  
Jocelyn L Smith ◽  
Tracey S Baute ◽  
Arthur W Schaafsma

Abstract A 4-yr study was conducted comparing the efficacy and value of fungicide-only (FST), neonicotinoid insecticide + fungicide (NST), and diamide insecticide + fungicide (DST) seed treatments for commercial corn Zea mays L. and soybean Glycines max (L.) Merr. production in Ontario, Canada. Plant stand, plant vigor, above- and below-ground insect injury, and yield were assessed on 160 field-scale experiments. Experiments also assessed early-season insect incidence and abundance using newly legislated thresholds for NST use in Ontario and in-season destructive sampling. Wireworms (Coleoptera: Elateridae) and white grubs (Coleoptera: Scarabeidae) were frequently observed at experimental sites; however, thresholds were rarely met and injury levels rarely led to yield loss. Of 129 and 31 corn and soybean sites, 8 and 6%, respectively, had a positive yield response to NST use. Across all sites, yield response of 0.1 and −0.05 Mg ha−1 was observed with NST use in corn and soybean, respectively; however, the costs associated with NST use were recovered at only 48 and 23% of corn and soybean sites, respectively, based on average grain prices and yields during the study. Infrequent incidence of economic injury and the absence of a consistent yield response to NST and DSTs throughout the 4 yr of the study indicate that widespread use of seed-applied insecticides in corn and soybean is unlikely to provide benefit to producers. These data highlight an opportunity for reducing input costs, environmental loading, and nontarget effects without adverse outcomes for Ontario producers.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9244
Author(s):  
Osamu K. Mikami ◽  
Misaki Takamatsu ◽  
Rika Yarita

Background The fall webworm, Hyphantria cunea Drury (Lepidoptera: Erebidae), is a widespread invasive species. It is native to North America, ranging from southern Canada to northern Mexico. During and after the 1940s, this pest was accidentally introduced in many parts of Europe and Asia. It has now spread to more than 30 countries. The larvae feed on leaves of a wide range of tree species, including ones used as street trees in cities, causing an increase in urban management cost. Although several pest management methods have been employed, pest damage continues especially in newly invaded areas. In this study, we examined the effect and cost-effectiveness of the komo-trap, traditionally used in Japan to reduce the population of larvae of the pine moth Dendrolimus spectabilis Butler (Lepidoptera: Lasiocampidae). This trap, which is safe for people and ecosystems, has not yet been applied to trap the fall webworm. Methods In two seasons of 2017, we set komo-traps on street trees in Hakodate City, Japan. We counted the numbers of captured fall webworms compared with controls. We also monitored other species to evaluate any nontarget effects of the trap. Results One komo, the material cost of which is about 1.10 USD, captured 43.8 fall webworms on average in summer and 27.2 in the fall. The values were significantly larger than those of the controls, which were 0.07 in summer and 0.14 in winter. Bycatch of other species was minimal in summer, whereas in the fall one komo, on average, caught 10.7 woodlice Porcellio sp. or spp. (Isopoda: Porcellionidae). Discussion The komo-trap is effective in capturing fall webworm. The cost performance of the trap is very favorable, and the nontarget effects can be reduced by using the trap in summer only. The komo-trap would complement other control methods such as tree pruning. Because its cost is low, we recommend that the komo-trap be introduced as a larger-scale trial.


2020 ◽  
Vol 40 (2) ◽  
pp. 129 ◽  
Author(s):  
Margaret M. Carreiro ◽  
Linda C. Fuselier ◽  
Major Waltman
Keyword(s):  

Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 216 ◽  
Author(s):  
Shimat V. Joseph

Azaleas (Rhododendron L. spp.) are widely grown ornamental plants in eastern and western regions of the USA. The azalea lace bug, Stephanitis pyrioides (Scott) (Hemiptera: Tingidae), is an important insect pest of azaleas. Adults and nymphs of S. pyrioides consume chlorophyll in azalea foliage, and severely affected plants appear bleached. Neonicotinoid insecticides are effective and widely used for S. pyrioides control; however, nursery growers and landscape professionals are concerned about nontarget effects on beneficial insects and demand neonicotinoid-free plants. There is clearly a need to develop reduced-risk control strategies for S. pyrioides. The insect growth regulator (IGR) novaluron elicits transovarial activity when adult S. pyrioides are exposed to it. However, it is not certain whether transovarial effects can be observed when S. pyrioides adults that colonize the abaxial leaf surface ingest novaluron residues deposited on the adaxial leaf surface. Experiments were conducted to assess transovarial activity upon exposure to various application rates of novaluron alone and novaluron with various adjuvants. The numbers of nymphs were significantly lower when the full rate of novaluron was applied on the adaxial surface of leaves compared to the number of nymphs on non-treated leaves. The densities of nymphs were not significantly different between the half and full rates of novaluron treatment. When novaluron with various adjuvants was applied to the adaxial surface of the leaves, the densities of nymphs were significantly lower under the novaluron treatments compared to the non-treated leaves, regardless of the type of adjuvant added. There was no significant difference between treatment with novaluron alone and the treatments of novaluron with adjuvants. These data show that transovarial activity was elicited in adults of S. pyrioides when novaluron was applied on the adaxial leaf surface.


Sign in / Sign up

Export Citation Format

Share Document