Genetically distinct sympatric populations of resident and anadromous Atlantic salmon, Salmo salar

1989 ◽  
Vol 67 (6) ◽  
pp. 1453-1461 ◽  
Author(s):  
E. Verspoor ◽  
L. J. Cole

Atlantic salmon (Salmo salar) from Little Gull Lake on the Gander River system of central Newfoundland were found to be electrophoretically polymorphic at 5 of 20 protein loci screened. Four of the polymorphic loci were structural and one was regulatory. Major heterozygote deficiencies relative to Castle–Hardy–Weinberg expectations were detected at the two most polymorphic loci, Aat-3 and Mdh-3,4, and significant nonrandom associations between genotypes at these loci and the other polymorphic loci, Sdh-1, Me-2, and Pgm1-t, were also found. The heterozygote deficiencies and the nonrandom genotype associations were attributable to the admixture of genetically distinct gene pools of resident and anadromous salmon in the lake. This is the first documented case of coexistence of reproductively separated populations of Atlantic salmon of the two life history types, and shows that the sympatric occurrence of the two forms can represent between-population variation.

1976 ◽  
Vol 33 (5) ◽  
pp. 1139-1143 ◽  
Author(s):  
G.M. Hare ◽  
M. D. B. Burt

Ten parasite species (one protozoan, eight helminth, one mollusc) were collected from 1262 smolts of Atlantic salmon (Salmo salar) in the eight tributaries and estuary of the Miramichi River, New Brunswick, Canada during 1970 and 1971. Three of these parasites, Discocotyle sagittata, Diplostomum spathaceum, and Neoechinorhynchus rutili showed restricted distributions within the study area. Discocotyle sagittata infected 32.6% of 435 smolts collected from tributaries draining into the Main Northwest Miramichi River but only 0.3% of 604 smolts collected from tributaries draining into the Main Southwest Miramichi River. Diplostomum spathaceum infected 18.9% of 148 smolts collected from the Southwest Miramichi River but was absent in 819 smolts collected from the remaining tributaries. Neoechinorhynchus rutili infected 18.8% of 144 smolts collected from the Bartholomew River but only 0.2% of 895 smolts collected from the other tributaries. Presence of Discocotyle sagittata on smolts collected in the estuary of the Miramichi River would identify smolts that originated in the Main Northwest Miramichi River, thus allowing for a separation of smolts from this branch and the other main branch, the Main Southwest Miramichi River. Presence of Diplostomum spathaceum in smolts collected in the Main Southwest Miramichi River or in the estuary of the Miramichi River would identify smolts that originated in the Southwest Miramichi River. Presence of N. rutili in smolts collected in the Main Southwest Miramichi River would identify smolts of Bartholomew River origin.


1999 ◽  
Vol 56 (12) ◽  
pp. 2397-2403 ◽  
Author(s):  
Sveinn K Valdimarsson ◽  
Neil B Metcalfe

Traditionally, behavioural studies on juvenile Atlantic salmon, Salmo salar, have been conducted during the day in summer. It is known that Atlantic salmon become nocturnal in winter, but very little is known about their behaviour at that time. Therefore, observations in a seminatural stream were carried out during the day and night, from February to June, comparing diel and seasonal differences in behaviour between fish adopting alternative life history strategies. The results showed a general trend for more activity in spring than in winter, and the fish were found to be foraging at surprisingly low light levels. There were differences in relative feeding rate between the life history strategies; the early migrant fish foraged mostly during the day whereas the delayed migrant fish did more foraging at night. There is some evidence that the early migrant fish made fewer feeding attempts over the winter, which is surprising, since they grow faster over that period. This suggests differences in foraging efficiency, which could contribute to the separation into these two life history strategies.


1969 ◽  
Vol 26 (9) ◽  
pp. 2535-2537 ◽  
Author(s):  
J. H. C. Pippy

Bacterial kidney disease was presumptively identified in each of 25 hatchery-reared juvenile salmon (Salmo salar) but in only 2 of 235 wild juveniles in the Margaree River system. Apparently spread of disease from the hatchery to wild salmon in the river is very gradual.


2007 ◽  
Vol 64 (3) ◽  
pp. 563-573 ◽  
Author(s):  
Sean C Mitchell ◽  
Richard A Cunjak

Stream discharge has long been associated with abundance of returning adult spawning salmonids to streams and may also affect body size distribution of adult salmon as low flows interfere with returns of larger-bodied fish. We examined these relationships of abundance and body size within Catamaran Brook, a third-order tributary to the Miramichi River system of New Brunswick, Canada, to investigate the causes of a declining trend in annual returns of Atlantic salmon (Salmo salar) to this stream. Regression models of adult abundance, proportion of the run as grilse, and body size of returning adults as functions of maximum daily stream discharge during the period of upstream spawner migration were constructed. Adult abundance shows a logarithmic relationship with stream discharge and provides good predictive ability, while appearing to not be significantly related to adult abundance in the larger Miramichi system. The proportion as grilse in the run and female body size are also logarithmically related to stream discharge, with low flow years being very influential in the regressions. These relationships of Atlantic salmon population abundance and body size characteristics have implications with respect to stock integrity and production of the following generation.


1985 ◽  
Vol 42 (3) ◽  
pp. 615-618 ◽  
Author(s):  
Richard L. Saunders ◽  
Charles B. Schom

Atlantic salmon (Salmo salar) demonstrate great variability in their life history; individuals from a given year-class can spawn during several years and can, therefore, breed with salmon from other year-classes. Atlantic salmon can mature after 1–4 sea-winters and some males mature as parr, during the second through fifth years, before going to sea. Salmon may survive to spawn more than once; some spawn several times. This variability in life history may be a safeguard against loss of small stocks through several successive years of reproductive failure, since nonspawning individuals in the river or at sea could spawn in subsequent years. Spawning populations are frequently quite small. The effective spawning population size may be potentially much larger, however, since members of several year-classes, including sexually mature male parr and anadromous adults of various ages, contribute to spawning. The level of inbreeding may be relatively low, since a number of year-classes, each with different sets of parents, are represented during spawning.


Sign in / Sign up

Export Citation Format

Share Document