The nonleptonic weak decays of Λ+c → K0ηp and Λ+c → π0фp are investigated from the viewpoint of probing the N*(1535) resonance and the possible фp state. For the Λ+c → K0ηp decay, we study the invariant mass distribution of ηp with both the chiral unitary approach and an effective Lagrangian model. Within the chiral unitary approach, the N*(1535) resonance is dynamically generated from the final state interaction of mesons and baryons in coupled channels. While for the effective Lagrangian model, we take a Breit-Wigner formula for the N*(1535) resonance. We found that the behavior of the N*(1535) resonance in the Λ+c → K0N*(1535) → K0ηp decay within the two approaches is different. For the Λ+c → π0фp decay, we consider a triangle singularity mechanism, where the Λ+c decays into the K*Σ*(1385), the Σ*(1385) decays into the π0Σ/Λ, and then the K*Σ/Λ merge to produce the фp in the final state. This mechanism produces a peak structure around 2020 MeV. In addition, the possibility that there is a hidden-strange pentaquark-like state is also considered by taking into account the final state interactions of K*Λ, K*Σ, and фp. We conclude that it is difficult to search for the hidden-strange state in this decay. However, we do expect nontrivial behavior in the фp invariant mass distribution. The proposed Λ+c decay mechanism here can provide valuable information on the properties of these nuclear resonances and can in principle be tested by experiments such as BESIII, LHCb and Belle-II.