About the relation of electron–electron interaction potentials with exchange and correlation functionals

2018 ◽  
Vol 91 (6) ◽  
Author(s):  
Adrián Gómez Pueyo ◽  
Alberto Castro
2019 ◽  
Vol 125 (20) ◽  
pp. 205704
Author(s):  
Ramji Singh ◽  
Mitra Dutta ◽  
Michael A. Stroscio ◽  
A. Glen Birdwell ◽  
Paul M. Amirtharaj

2021 ◽  
pp. 19-23
Author(s):  
N.V. Maksyuta ◽  
V.I. Vysotskii ◽  
S.V. Efimenko ◽  
Yu.A. Slinchenko

The paper deals with the calculation of electron interaction potentials with the main charged [110] axes in a lithium hydride crystal at T = 300, 600, and 900 K temperatures. For relativistic electrons with Lorentz factors γ = 50, 75, 100 the energy and corresponding wave functions of transverse levels of channeling motion are found numerically. The radiation spectra of channeling electrons with (and without) accounting an angular dispersion are calculated on the basis of these data.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 655
Author(s):  
Alisher M. Kariev ◽  
Michael E. Green

There are reasons to consider quantum calculations to be necessary for ion channels, for two types of reasons. The calculations must account for charge transfer, and the possible switching of hydrogen bonds, which are very difficult with classical force fields. Without understanding charge transfer and hydrogen bonding in detail, the channel cannot be understood. Thus, although classical approximations to the correct force fields are possible, they are unable to reproduce at least some details of the behavior of a system that has atomic scale. However, there is a second class of effects that is essentially quantum mechanical. There are two types of such phenomena: exchange and correlation energies, which have no classical analogues, and tunneling. Tunneling, an intrinsically quantum phenomenon, may well play a critical role in initiating a proton cascade critical to gating. As there is no classical analogue of tunneling, this cannot be approximated classically. Finally, there are energy terms, exchange and correlation energy, whose values can be approximated classically, but these approximations must be subsumed within classical terms, and as a result, will not have the correct dependence on interatomic distances. Charge transfer, and tunneling, require quantum calculations for ion channels. Some results of quantum calculations are shown.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
D. Maryenko ◽  
M. Kawamura ◽  
A. Ernst ◽  
V. K. Dugaev ◽  
E. Ya. Sherman ◽  
...  

AbstractSpin–orbit coupling (SOC) is pivotal for various fundamental spin-dependent phenomena in solids and their technological applications. In semiconductors, these phenomena have been so far studied in relatively weak electron–electron interaction regimes, where the single electron picture holds. However, SOC can profoundly compete against Coulomb interaction, which could lead to the emergence of unconventional electronic phases. Since SOC depends on the electric field in the crystal including contributions of itinerant electrons, electron–electron interactions can modify this coupling. Here we demonstrate the emergence of the SOC effect in a high-mobility two-dimensional electron system in a simple band structure MgZnO/ZnO semiconductor. This electron system also features strong electron–electron interaction effects. By changing the carrier density with Mg-content, we tune the SOC strength and achieve its interplay with electron–electron interaction. These systems pave a way to emergent spintronic phenomena in strong electron correlation regimes and to the formation of quasiparticles with the electron spin strongly coupled to the density.


2021 ◽  
pp. 116387
Author(s):  
L.A. Padilla ◽  
A. Ramírez-Hernández ◽  
J. Quintana-H ◽  
A.L. Benavides ◽  
J.C. Armas-Perez

Sign in / Sign up

Export Citation Format

Share Document