scholarly journals Curvature invariants and lower dimensional black hole horizons

2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Daniele Gregoris ◽  
Yen Chin Ong ◽  
Bin Wang

AbstractIt is known that the event horizon of a black hole can often be identified from the zeroes of some curvature invariants. The situation in lower dimensions has not been thoroughly clarified. In this work we investigate both ($$2+1$$2+1)- and ($$1+1$$1+1)-dimensional black hole horizons of static, stationary and dynamical black holes, identified with the zeroes of scalar polynomial and Cartan curvature invariants, with the purpose of discriminating the different roles played by the Weyl and Riemann curvature tensors. The situations and applicability of the methods are found to be quite different from that in 4-dimensional spacetime. The suitable Cartan invariants employed for detecting the horizon can be interpreted as a local extremum of the tidal force suggesting that the horizon of a black hole is a genuine special hypersurface within the full manifold, contrary to the usual claim that there is nothing special at the horizon, which is said to be a consequence of the equivalence principle.

2013 ◽  
Vol 88 (4) ◽  
Author(s):  
Cesar Arias ◽  
Rodrigo Aros ◽  
Nelson Zamorano

2019 ◽  
Vol 34 (22) ◽  
pp. 1950174
Author(s):  
Roberto Casadio ◽  
Andrea Giusti ◽  
Jonas Mureika

Black holes in [Formula: see text] spatial dimensions are studied from the perspective of the corpuscular model of gravitation, in which black holes are described as Bose–Einstein condensates (BEC) of (virtual soft) gravitons. In particular, since the energy of these gravitons should increase as the black hole evaporates, eventually approaching the Planck scale, the lower-dimensional cases could provide important insight into the late stages and end of Hawking evaporation. We show that the occupation number of gravitons in the condensate scales holographically in all dimensions as [Formula: see text], where [Formula: see text] is the relevant length for the system in the [Formula: see text]-dimensional spacetime. In particular, this analysis shows that black holes cannot contain more than a few gravitons in [Formula: see text]. Since dimensional reduction is a common feature of many models of quantum gravity, this result can shed light on the end of the Hawking evaporation. We also consider [Formula: see text]-dimensional cosmology in the context of corpuscular gravity and show that the Friedmann equation reproduces the expected holographic scaling as in higher dimensions.


2013 ◽  
Vol 28 (32) ◽  
pp. 1350129
Author(s):  
HUI-HUA ZHAO ◽  
GUANG-LIANG LI ◽  
REN ZHAO ◽  
MENG-SEN MA ◽  
LI-CHUN ZHANG

Based on the works of Ghosh et al. who view the black hole entropy as the logarithm of the number of quantum states on the Quantum Isolated Horizon (QIH), the entropy of d-dimensional black hole is studied. According to the Unruh–Verlinde temperature deduced from the concept of entropic force, the statistical entropy of quantum fields under the background of d-dimensional spacetime is calculated by means of quantum statistics. The results reveal the relation between the entanglement entropy of black hole and the logarithm of the number of quantum states and display the effects of dimensions on the correction terms of the entanglement entropy.


2015 ◽  
Vol 92 (12) ◽  
Author(s):  
Antonia M. Frassino ◽  
Robert B. Mann ◽  
Jonas R. Mureika

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Georgios K. Karananas ◽  
Alex Kehagias ◽  
John Taskas

Abstract We derive a novel four-dimensional black hole with planar horizon that asymptotes to the linear dilaton background. The usual growth of its entanglement entropy before Page’s time is established. After that, emergent islands modify to a large extent the entropy, which becomes finite and is saturated by its Bekenstein-Hawking value in accordance with the finiteness of the von Neumann entropy of eternal black holes. We demonstrate that viewed from the string frame, our solution is the two-dimensional Witten black hole with two additional free bosons. We generalize our findings by considering a general class of linear dilaton black hole solutions at a generic point along the σ-model renormalization group (RG) equations. For those, we observe that the entanglement entropy is “running” i.e. it is changing along the RG flow with respect to the two-dimensional worldsheet length scale. At any fixed moment before Page’s time the aforementioned entropy increases towards the infrared (IR) domain, whereas the presence of islands leads the running entropy to decrease towards the IR at later times. Finally, we present a four-dimensional charged black hole that asymptotes to the linear dilaton background as well. We compute the associated entanglement entropy for the extremal case and we find that an island is needed in order for it to follow the Page curve.


2014 ◽  
Vol 89 (12) ◽  
Author(s):  
Matthew J. S. Beach ◽  
Eric Poisson ◽  
Bernhard G. Nickel

2003 ◽  
Vol 71 (10) ◽  
pp. 1037-1042 ◽  
Author(s):  
Ratna Koley ◽  
Supratik Pal ◽  
Sayan Kar

Sign in / Sign up

Export Citation Format

Share Document