scholarly journals de Sitter entropy from a lower dimensional black hole

2013 ◽  
Vol 88 (4) ◽  
Author(s):  
Cesar Arias ◽  
Rodrigo Aros ◽  
Nelson Zamorano
1996 ◽  
Vol 11 (18) ◽  
pp. 1467-1473 ◽  
Author(s):  
MAKOTO NATSUUME ◽  
NORISUKE SAKAI ◽  
MASAMICHI SATO

The SL (2, R)/Z WZW orbifold which describes the (2+1)-dimensional black hole approaching anti-de Sitter space asymptotically. We study the 1 → 1 tachyon scattering off the rotating black hole background and calculate the Hawking temperature using the Bogoliubov transformation.


2008 ◽  
Vol 23 (14n15) ◽  
pp. 2169-2171 ◽  
Author(s):  
YUKINORI YASUI

This paper gives a brief review of recent results on higher dimensional black hole solutions. It is shown that the D-dimensional Kerr-NUT-de Sitter spacetime constructed by Chen-Lü-Pope is the only spacetime admitting a rank-2 conformal Killing-Yano tensor with a certain symmetry.


2020 ◽  
pp. 200-258
Author(s):  
Piotr T. Chruściel

In previous chapters we presented the key notions associated with stationary black-hole spacetimes, as well as the minimal set of metrics needed to illustrate the basic features of the world of black holes. In this chapter we present some further black holes, selected because of their physical and mathematical interest. We start, in Section 5.1, with the Kerr–de Sitter/anti-de Sitter metrics, the cosmological counterparts of the Kerr metrics. Section 5.2 contains a description of the Kerr–Newman–de Sitter/anti-de Sitter metrics, which are the charged relatives of the metrics presented in Section 5.1. In Section 5.3 we analyse in detail the global structure of the Emparan–Reall ‘black rings’: these are five-dimensional black-hole spacetimes with R × S 1 × S 2-horizon topology. The Rasheed metrics of Section 5.4 provide an example of black holes arising in Kaluza–Klein theories. The Birmingham family of metrics, presented in Section 5.5, forms the most general class known of explicit static vacuum metrics with cosmological constant in all dimensions, with a wide range of horizon topologies.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Daniele Gregoris ◽  
Yen Chin Ong ◽  
Bin Wang

AbstractIt is known that the event horizon of a black hole can often be identified from the zeroes of some curvature invariants. The situation in lower dimensions has not been thoroughly clarified. In this work we investigate both ($$2+1$$2+1)- and ($$1+1$$1+1)-dimensional black hole horizons of static, stationary and dynamical black holes, identified with the zeroes of scalar polynomial and Cartan curvature invariants, with the purpose of discriminating the different roles played by the Weyl and Riemann curvature tensors. The situations and applicability of the methods are found to be quite different from that in 4-dimensional spacetime. The suitable Cartan invariants employed for detecting the horizon can be interpreted as a local extremum of the tidal force suggesting that the horizon of a black hole is a genuine special hypersurface within the full manifold, contrary to the usual claim that there is nothing special at the horizon, which is said to be a consequence of the equivalence principle.


Author(s):  
Younes Younesizadeh ◽  
Yahya Younesizadeh

In this paper we investigate the black hole solutions with toroidal horizons in scalar hair/dilaton gravity. First, we obtain the field equations in n-dimensions, then we propose some different models(Ansatz) and find the exact solutions for these type of ansatzs. These solutions are not asymptotically (anti-)de Sitter or flat, except in one special case. We also show that the BTZ and BTZ-like solutions will emerge from some of these solutions as a special case. We also show that when the event horizon radius gets bigger and bigger, the temperature will be the same in various dimensions. The only difference is noticeable near the origin(this statement is clear in diagrams). For these solutions, we obtained a new version of the Smarr formula as well. Also, we show that the presence of the scalar field makes the black holes to be more stable near the origin except for the BTZ case. We can say in general that the presence of scalar field is an important factor in black hole’s stability investigations. In the critical behavior analysis we find that there is no evidence to show the existence of P-V criticality. We present here a class of interior solutions corresponding to the solution in scalar hair gravity exterior. The solution which is obtained in linear case is regular and well-behaved at the stellar interior.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ahmad Sheykhi

Abstract One of the most important achievements in general relativity has been discovery of the (2 + 1)-dimensional black hole solutions of Einstein gravity in anti-de Sitter (AdS) spacetime [7]. In this paper, we construct, for the first time, the (2 + 1)-dimensional solutions of mimetic theory of gravity. These solutions may provide a powerful background to investigate the physical properties of mimetic gravity and examine its viability in lower spacetime dimensions. In particular, some physical properties of stationary black hole solutions of this theory in the presence of charge or angular momentum are investigated.


1998 ◽  
Vol 13 (29) ◽  
pp. 5093-5112 ◽  
Author(s):  
JOHN ELLIS ◽  
N. E. MAVROMATOS ◽  
D. V. NANOPOULOS

We first review the interpretation of world sheet defects as D branes described by a critical theory in 11 dimensions, that we interpret as M theory. We then show that D-brane recoil induces dynamically an anti-de Sitter (AdS) space–time background, with criticality restored by a twelfth timelike dimension described by a Liouville field. Local physics in the bulk of this AdS11 may be described by an Osp (1|32, R) ⊗ Osp (1|32, R) topological gauge theory (TGT), with nonlocal boundary states in doubleton representations. We draw analogies with structures previously exhibited in two-dimensional black hole models. Wilson loops of "matter" in the TGT may be described by an effective string action, and defect condensation may yield string tension and cause a space–time metric to appear.


2014 ◽  
Vol 11 (05) ◽  
pp. 1450047 ◽  
Author(s):  
A. Belhaj ◽  
M. Chabab ◽  
H. El Moumni ◽  
M. B. Sedra ◽  
A. Segui

Inspired from the inflation brane world cosmology, we study the thermodynamics of a black hole solution in two-dimensional dilaton gravity with an arctangent potential background. We first derive the two-dimensional black hole geometry, then we examine its asymptotic behaviors. More precisely, we find that such behaviors exhibit properties appearing in some known cases including the anti-de Sitter and the Schwarzschild black holes. Using the complex path method, we compute the Hawking radiation. The entropy function can be related to the value of the potential at the horizon.


Sign in / Sign up

Export Citation Format

Share Document