scholarly journals Self similar collapse and the Raychaudhuri equation

2019 ◽  
Vol 79 (12) ◽  
Author(s):  
Shibendu Gupta Choudhury ◽  
Soumya Chakrabarti ◽  
Ananda Dasgupta ◽  
Narayan Banerjee

AbstractThe role of the Raychaudhuri equation in studying gravitational collapse is discussed. A self-similar distribution of a scalar field along with an imperfect fluid in a conformally flat spacetime is considered for the purpose. The general focusing condition is found out and verified against the available exact solutions. The connection between the Raychaudhuri equation and the critical phenomena is also explored.

Author(s):  
Carlos A. R. Herdeiro ◽  
João M. S. Oliveira ◽  
Eugen Radu

AbstractRecently, no-go theorems for the existence of solitonic solutions in Einstein–Maxwell-scalar (EMS) models have been established (Herdeiro and Oliveira in Class Quantum Gravity 36(10):105015, 2019). Here we discuss how these theorems can be circumvented by a specific class of non-minimal coupling functions between a real, canonical scalar field and the electromagnetic field. When the non-minimal coupling function diverges in a specific way near the location of a point charge, it regularises all physical quantities yielding an everywhere regular, localised lump of energy. Such solutions are possible even in flat spacetime Maxwell-scalar models, wherein the model is fully integrable in the spherical sector, and exact solutions can be obtained, yielding an explicit mechanism to de-singularise the Coulomb field. Considering their gravitational backreaction, the corresponding (numerical) EMS solitons provide a simple example of self-gravitating, localised energy lumps.


2008 ◽  
Vol 17 (11) ◽  
pp. 2143-2158 ◽  
Author(s):  
F. I. M. PEREIRA ◽  
R. CHAN

Self-similar solutions of a collapsing perfect fluid and a massless scalar field with kinematic self-similarity of the first kind in 2+1 dimensions are obtained. The local and global properties of the solutions are studied. It is found that some of them represent gravitational collapse, in which black holes are always formed, and some may be interpreted as representing cosmological models.


1991 ◽  
Vol 06 (15) ◽  
pp. 2693-2706 ◽  
Author(s):  
J. GREENSITE

Some issues in the quantum mechanics of gravitational collapse are discussed in the framework of a simple minisuperspace model, consisting of a Friedman metric coupled to a massless scalar field. The model illustrates the role of intrinsic time coordinates in parametrizing gravitational collapse through a singularity, and the relevance of quantizing the metric scale factor over an infinite, rather than half-infinite, range.


2006 ◽  
Vol 15 (02) ◽  
pp. 131-152 ◽  
Author(s):  
F. I. M. PEREIRA ◽  
R. CHAN ◽  
AN ZHONG WANG

Self-similar solutions of a collapsing perfect fluid and a massless scalar field with kinematic self-similarity of the second kind in (2 + 1) dimensions are obtained. The local and global properties of the solutions are studied. It is found that some of them represent gravitational collapse, in which black holes are always formed, and some may be interpreted as representing cosmological models.


1995 ◽  
Vol 10 (08) ◽  
pp. 1219-1236 ◽  
Author(s):  
S. KHARCHEV ◽  
A. MARSHAKOV

We study the role of integral representations in the description of nonperturbative solutions to c ≤ 1 string theory. A generic solution is determined by two functions, W(x) and Q(x), which behave at infinity like xp and xq respectively. The integral formula for arbitrary (p, q) models is derived, which explicitly realizes a duality transformation between (p, q) and (q, p) 2D gravity solutions. We also discuss the exact solutions to the string equation and reduction condition and present several explicit examples.


2000 ◽  
Vol 09 (04) ◽  
pp. 475-493 ◽  
Author(s):  
M. K. MAK ◽  
T. HARKO

The evolution of a causal bulk viscous cosmological fluid filled open conformally flat spacetime is considered. By means of appropriate transformations the equation describing the dynamics and evolution of the very early Universe can be reduced to a first order Abel type differential equation. In the case of a bulk viscosity coefficient proportional to the square root of the density, ξ~ρ1/2, an exact and two particular approximate solutions are obtained. The resulting cosmologies start from a singular state and generally have a noninflationary behavior, the deceleration parameter tending, in the large time limit, to zero. The thermodynamic consistency of the results is also checked.


Sign in / Sign up

Export Citation Format

Share Document