scholarly journals U(1) mixing and the weak gravity conjecture

2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Karim Benakli ◽  
Carlo Branchina ◽  
Gaëtan Lafforgue-Marmet

AbstractTiny values for gauge couplings of dark photons allow to suppress their kinetic mixing with ordinary photons. We point out that the weak gravity conjecture predicts consequently low ultraviolet cut-offs where new degrees of freedom might appear. In particular, a mixing angle of $$\mathcal {O}(10^{-15})$$ O ( 10 - 15 ) , required in order to fit the excess reported by XENON1T, corresponds to new physics below $$\mathcal {O}(100)$$ O ( 100 ) TeV, thus accessible at a future circular collider. We show that possible realizations are provided by compactifications with six large extra dimensions and a string scale of order $$\mathcal {O}(100)$$ O ( 100 ) TeV.

2013 ◽  
Vol 28 (08) ◽  
pp. 1330012
Author(s):  
PIERRE-HUGUES BEAUCHEMIN ◽  
REYHANEH REZVANI

Monojet events consist in event topologies with a high transverse momentum jet and a large amount of missing transverse energy. They constitute a promising final state that could lead to phenomena beyond the Standard Model. The theoretical models giving rise to such a signature include the pair production of Weakly Interacting Massive Particles, as dark matter candidates, and models of large extra dimensions. Monojet events can even be used to measure the Standard Model properties of Z boson decays, provided that the precision of the analysis is high enough. Such precision can be achieved by using data-driven determinations of the Standard Model contributions to monojet events. Exotics searches for new physics in such a final state have been performed at all high energy hadronic collider experiments since SPS. The ATLAS and CMS analyses with 7 TeV LHC data provide the latest and most useful information obtained from monojet studies. Their results are presented and discussed in this review paper.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Thomas G. Rizzo ◽  
George N. Wojcik

Abstract Extra dimensions have proven to be a very useful tool in constructing new physics models. In earlier work, we began investigating toy models for the 5-D analog of the kinetic mixing/vector portal scenario where the interactions of dark matter, taken to be, e.g., a complex scalar, with the brane-localized fields of the Standard Model (SM) are mediated by a massive U(1)D dark photon living in the bulk. These models were shown to have many novel features differentiating them from their 4-D analogs and which, in several cases, avoided some well-known 4-D model building constraints. However, these gains were obtained at the cost of the introduction of a fair amount of model complexity, e.g., dark matter Kaluza-Klein excitations. In the present paper, we consider an alternative setup wherein the dark matter and the dark Higgs, responsible for U(1)D breaking, are both localized to the ‘dark’ brane at the opposite end of the 5-D interval from where the SM fields are located with only the dark photon now being a 5-D field. The phenomenology of such a setup is explored for both flat and warped extra dimensions and compared to the previous more complex models.


2018 ◽  
Vol 46 ◽  
pp. 1860046 ◽  
Author(s):  
Dayong Wang

Many models beyond the Standard Model, motivated by the recent astrophysical anomalies, predict a new type of weak-interacting degrees of freedom. Typical models include the possibility of the low-mass dark gauge bosons of a few GeV and thus making them accessible at the BESIII experiment running at the tau-charm region. The BESIII has recently searched such dark bosons in several decay modes using the high statistics data set collected at charmonium resonaces. This talk will summarize the recent BESIII results of these dark photon searches and related new physics studies.


2008 ◽  
Vol 23 (17n20) ◽  
pp. 1266-1277 ◽  
Author(s):  
WILLEM T. H. VAN OERS

Searches for parity violation in hadronic systems started soon after the evidence for parity violation in β-decay of 60 Co was presented by Madame Chien-Shiung Wu and in π and μ decay by Leon Lederman in 1957. The early searches for parity violation in hadronic systems did not reach the sensitivity required and only after technological advances in later years was parity violation unambiguously established. Within the meson-exchange description of the strong interaction, theory and experiment meet in a set of seven weak meson-nucleon coupling constants. Even today, after almost five decades, the determination of the seven weak meson-nucleon couplings is incomplete. Parity violation in nuclear systems is rather complex due to the intricacies of QCD. More straight forward in terms of interpretation are measurements of the proton-proton parity-violating analyzing power (normalized differences in scattering yields for positive and negative helicity incident beams), for which there exist three precision experiments (at 13.6, at 45, and 221 MeV). To-date, there are better possibilities for theoretical interpretation using effective field theory approaches. The situation with regard to the measurement of the parity-violating analyzing power or asymmetry in polarized electron scattering is quite different. Although the original measurements were intended to determine the electro-weak mixing angle, with the current knowledge of the electro-weak interaction and the great precision with which electro-weak radiative corrections can be calculated, the emphasis has been to study the structure of the nucleon, and in particular the strangeness content of the nucleon. A whole series of experiments (the SAMPLE experiment at MIT-Bates, the G0 experiment and HAPPEX experiments at Jefferson Laboratory (JLab), and the PVA4 experiment at MAMI) have indicated that the strange quark contributions to the charge and magnetization distributions of the nucleon are tiny. These measurements if extrapolated to zero degrees and zero momentum transfer have also provided a factor five improvement in the knowledge of the neutral weak couplings to the quarks. Choosing appropriate kinematics in parity-violating electron-proton scattering permits nucleon structure effects on the measured analyzing power to be precisely controlled. Consequently, a precise measurement of the ‘running’ of sin 2θw or the electro-weak mixing angle has become within reach. The [Formula: see text] experiment at Jefferson Laboratory is to measure this quantity to a precision of about 4%. This will either establish conformity with the Standard Model of quarks and leptons or point to New Physics as the Standard Model must be encompassed in a more general theory required, for instance, by a convergence of the three couplings (strong, electromagnetic, and weak) to a common value at the GUT scale. The upgrade of CEBAF at Jefferson Laboratory to 12 GeV, will allow a new measurement of sin 2θW in parity-violating electron-electron scattering with an improved precision to the current better measurement (the SLAC E158 experiment) of the ‘running’ of sin 2θW away from the Z0 pole. Preliminary design studies of such an experiment show that a precision comparable to the most precise individual measurements at the Z0 pole (to about ±0.00025) can be reached. The result of this experiment will be rather complementary to the [Formula: see text] experiment in terms of sensitivity to New Physics.


2004 ◽  
Vol 13 (10) ◽  
pp. 2275-2279 ◽  
Author(s):  
J. A. R. CEMBRANOS ◽  
A. DOBADO ◽  
A. L. MAROTO

Extra-dimensional theories contain additional degrees of freedom related to the geometry of the extra space which can be interpreted as new particles. Such theories allow to reformulate most of the fundamental problems of physics from a completely different point of view. In this essay, we concentrate on the brane fluctuations which are present in brane-worlds, and how such oscillations of the own space–time geometry along curved extra dimensions can help to resolve the Universe missing mass problem. The energy scales involved in these models are low compared to the Planck scale, and this means that some of the brane fluctuations distinctive signals could be detected in future colliders and in direct or indirect dark matter searches.


Sign in / Sign up

Export Citation Format

Share Document