scholarly journals Gravitating superconducting solitons in the (3+1)-dimensional Einstein gauged non-linear $$\sigma $$-model

2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Fabrizio Canfora ◽  
Alex Giacomini ◽  
Marcela Lagos ◽  
Seung Hun Oh ◽  
Aldo Vera

AbstractIn this paper, we construct the first analytic examples of $$(3+1)$$ ( 3 + 1 ) -dimensional self-gravitating regular cosmic tube solutions which are superconducting, free of curvature singularities and with non-trivial topological charge in the Einstein-SU(2) non-linear $$\sigma $$ σ -model. These gravitating topological solitons at a large distance from the axis look like a (boosted) cosmic string with an angular defect given by the parameters of the theory, and near the axis, the parameters of the solutions can be chosen so that the metric is singularity free and without angular defect. The curvature is concentrated on a tube around the axis. These solutions are similar to the Cohen–Kaplan global string but regular everywhere, and the non-linear $$\sigma $$ σ -model regularizes the gravitating global string in a similar way as a non-Abelian field regularizes the Dirac monopole. Also, these solutions can be promoted to those of the fully coupled Einstein–Maxwell non-linear $$\sigma $$ σ -model in which the non-linear $$\sigma $$ σ -model is minimally coupled both to the U(1) gauge field and to General Relativity. The analysis shows that these solutions behave as superconductors as they carry a persistent current even when the U(1) field vanishes. Such persistent current cannot be continuously deformed to zero as it is tied to the topological charge of the solutions themselves. The peculiar features of the gravitational lensing of these gravitating solitons are shortly discussed.

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Kang Zhou

Abstract We generalize the unifying relations for tree amplitudes to the 1-loop Feynman integrands. By employing the 1-loop CHY formula, we construct differential operators which transmute the 1-loop gravitational Feynman integrand to Feynman integrands for a wide range of theories, including Einstein-Yang-Mills theory, Einstein-Maxwell theory, pure Yang-Mills theory, Yang-Mills-scalar theory, Born-Infeld theory, Dirac-Born-Infeld theory, bi-adjoint scalar theory, non-linear sigma model, as well as special Galileon theory. The unified web at 1-loop level is established. Under the well known unitarity cut, the 1-loop level operators will factorize into two tree level operators. Such factorization is also discussed.


1984 ◽  
Vol 142 (1-2) ◽  
pp. 64-68 ◽  
Author(s):  
N.S. Craigie ◽  
W. Nahm

Sign in / Sign up

Export Citation Format

Share Document