scholarly journals The anomalous 21-cm absorption at high redshifts

2021 ◽  
Vol 81 (3) ◽  
Author(s):  
Fulvio Melia

AbstractThe EDGES collaboration has reported the detection of a global 21-cm signal with a plateau centered at 76 MHz (i.e., redshift 17.2), with an amplitude of $$500^{+200}_{-500}$$ 500 - 500 + 200  mK. This anomalous measurement does not comport with standard cosmology, which can only accommodate an amplitude $$\lesssim 230$$ ≲ 230  mK. Nevertheless, the line profile’s redshift range ($$15\lesssim z\lesssim 20$$ 15 ≲ z ≲ 20 ) suggests a possible link to Pop III star formation and an implied evolution out of the ‘dark ages.’ Given this tension with the standard model, we here examine whether the observed 21-cm signal is instead consistent with the results of recent modeling based on the alternative Friedmann–Lemaître–Robertson–Walker cosmology known as the $$R_{\mathrm{h}}=ct$$ R h = c t universe, showing that – in this model – the CMB radiation might have been rethermalized by dust ejected into the IGM by the first-generation stars at redshift $$z\sim 16$$ z ∼ 16 . We find that the requirements for this process to have occurred would have self-consistently established an equilibrium spin temperature $$T_{\mathrm{s}}\approx 3.4$$ T s ≈ 3.4 K in the neutral hydrogen, via the irradiation of the IGM by deep penetrating X-rays emitted at the termination shocks of Pop III supernova remnants. Such a dust scenario has been strongly ruled out for the standard model, so the spin temperature ($$\sim 3.3$$ ∼ 3.3 K) inferred from the 21-cm absorption feature appears to be much more consistent with the $$R_{\mathrm{h}}=ct$$ R h = c t profile than that implied by $$\Lambda $$ Λ CDM, for which adiabatic cooling would have established a spin temperature $$T_\mathrm{s}(z=17.2)\sim 6$$ T s ( z = 17.2 ) ∼ 6 K.

2019 ◽  
Vol 489 (3) ◽  
pp. 3966-3980
Author(s):  
Evgeny O Zavarygin ◽  
John K Webb

ABSTRACT The cosmological principle, the combined assumptions of cosmological isotropy and homogeneity, underpins the standard model of big bang cosmology with which we interpret astronomical observations. A new test of isotropy over the redshift range 2 < z < 4 and across large angular scales on the sky is presented. We use the cosmological distribution of neutral hydrogen, as probed by the Ly α forest seen towards distant quasars. The Sloan Digital Sky Survey provides the largest data set of quasar spectra available to date. We use combined information from Data Releases 12 and 14 to select a sample of 142 661 quasars most suitable for this purpose. The scales covered by the data extend beyond post-inflation causality scales, thus probing initial conditions in the early Universe. We identify significant spatially correlated systematic effects that can emulate cosmological anisotropy. Once these systematics have been accounted for, the data are found to be consistent with isotropy, providing an important independent check on the standard model, consistent with results from cosmic microwave background data.


1992 ◽  
Vol 07 (31) ◽  
pp. 2921-2930
Author(s):  
R. FOOT ◽  
H. LEW

It is possible that the tau lepton may have a longer life-time than that predicted by the Standard Model. The simplest extension to the Standard Model incorporating a longer tauon life-time involves the addition of a gauge singlet Weyl fermion. We consider the most general model of this kind and evaluate the experimental constraints on the various parameters of this model. We show that the model is consistent with the standard cosmology model for a range of parameters. We then examine possible signatures of the model in certain experiments searching for heavy neutral leptons.


1995 ◽  
Vol 163 ◽  
pp. 116-126
Author(s):  
D. J. Hillier

In the last decade there has been a tremendous advance in our understanding of the atmospheres and stellar winds of Wolf-Rayet (WR) stars. This has arisen through improved observations, and through the application of extensive radiative transfer codes which has allowed us to model some of the complex processes occurring in WR envelopes. Present models are able to simultaneously treat detailed atomic models for H, He, C, N, O and Si. In the near future we will be able to treat Fe, and to more accurately treat the formidable problem of non-LTE line-blanketing. In this review we address current limitations in modeling the extended atmospheres of WR atmospheres. These limitations fall into two classes — those reflecting our inability to accurately compute the “Standard Model”, and those referring to assumptions in the “Standard Model” that need to be relaxed. Under the first category we include inaccuracies in the atomic data, the neglect of line-blanketing in the model calculations, and the inability of the present generation of models to compute the velocity law. Under the second category we include the assumption of spherical geometry, the assumption of homogeneity, the neglect of rotation, and the influence of X-rays arising from shocks in the stellar wind.


1974 ◽  
Vol 60 ◽  
pp. 329-334
Author(s):  
F. D. Kahn

An estimate of the amount of ionizing radiation available in a supernova explosion falls far short of the amount needed in the standard model of the Gum nebula. The only possibility left is radiation from the pulsar.


Author(s):  
Sterling P. Newberry

At the 1958 meeting of our society, then known as EMSA, the author introduced the concept of microspace and suggested its use to provide adequate information storage space and the use of electron microscope techniques to provide storage and retrieval access. At this current meeting of MSA, he wishes to suggest an additional use of the power of the electron microscope.The author has been contemplating this new use for some time and would have suggested it in the EMSA fiftieth year commemorative volume, but for page limitations. There is compelling reason to put forth this suggestion today because problems have arisen in the “Standard Model” of particle physics and funds are being greatly reduced just as we need higher energy machines to resolve these problems. Therefore, any techniques which complement or augment what we can accomplish during this austerity period with the machines at hand is worth exploring.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2014 ◽  
Vol 36 (10) ◽  
pp. 2156-2167
Author(s):  
Qiang LI ◽  
Deng-Guo FENG ◽  
Li-Wu ZHANG ◽  
Zhi-Gang GAO

Sign in / Sign up

Export Citation Format

Share Document