scholarly journals Non-comoving cold dark matter in a $$\varLambda $$CDM background

2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Sebastián Nájera ◽  
Roberto A. Sussman

AbstractWe examine the evolution of peculiar velocities of cold dark matter (CDM) in localized arrays of inhomogeneous cosmic structures in a $$\varLambda $$ Λ CDM background that can be identified as a frame comoving with the Cosmic Microwave (CMB). These arrays are constructed by smoothly matching to this cosmological background regions of Szekeres-II models whose source is an imperfect fluid reinterpreted as non-comoving dust, keeping only first order terms in v/c. Considering a single Szekeres-II region matched along two comoving interfaces to a $$\varLambda $$ Λ CDM background, the magnitudes of peculiar velocities within this region are compatible with values reported in the literature, while the present day Hubble expansion scalar differs from that of the $$\varLambda $$ Λ CDM background value by a 10% factor, a result that might provide useful information to the ongoing debate on the $$H_0$$ H 0 tension. While the models cannot describe the virialization process, we show through a representative example that structures of galactic cluster mass reach the onset of this process at redshifts around $$z\sim 3$$ z ∼ 3 .

1994 ◽  
Vol 431 ◽  
pp. 559 ◽  
Author(s):  
Wojciech H. Zurek ◽  
Peter J. Quinn ◽  
John K. Salmon ◽  
Michael S. Warren

1997 ◽  
Vol 482 (2) ◽  
pp. L121-L124 ◽  
Author(s):  
Stefano Borgani ◽  
Luiz N. da Costa ◽  
Wolfram Freudling ◽  
Riccardo Giovanelli ◽  
Martha P. Haynes ◽  
...  

1988 ◽  
Author(s):  
A. K. Drukier ◽  
Katherine Freese ◽  
Joshua Frieman

1987 ◽  
Vol 117 ◽  
pp. 490-490
Author(s):  
A. K. Drukier ◽  
K. Freese ◽  
D. N. Spergel

We consider the use of superheated superconducting colloids as detectors of weakly interacting galactic halo candidate particles (e.g. photinos, massive neutrinos, and scalar neutrinos). These low temperature detectors are sensitive to the deposition of a few hundreds of eV's. The recoil of a dark matter particle off of a superheated superconducting grain in the detector causes the grain to make a transition to the normal state. Their low energy threshold makes this class of detectors ideal for detecting massive weakly interacting halo particles.We discuss realistic models for the detector and for the galactic halo. We show that the expected count rate (≈103 count/day for scalar and massive neutrinos) exceeds the expected background by several orders of magnitude. For photinos, we expect ≈1 count/day, more than 100 times the predicted background rate. We find that if the detector temperature is maintained at 50 mK and the system noise is reduced below 5 × 10−4 flux quanta, particles with mass as low as 2 GeV can be detected. We show that the earth's motion around the Sun can produce a significant annual modulation in the signal.


Author(s):  
Kun Ting Eddie Chua ◽  
Karia Dibert ◽  
Mark Vogelsberger ◽  
Jesús Zavala

Abstract We study the effects of inelastic dark matter self-interactions on the internal structure of a simulated Milky Way (MW)-size halo. Self-interacting dark matter (SIDM) is an alternative to collisionless cold dark matter (CDM) which offers a unique solution to the problems encountered with CDM on sub-galactic scales. Although previous SIDM simulations have mainly considered elastic collisions, theoretical considerations motivate the existence of multi-state dark matter where transitions from the excited to the ground state are exothermic. In this work, we consider a self-interacting, two-state dark matter model with inelastic collisions, implemented in the Arepo code. We find that energy injection from inelastic self-interactions reduces the central density of the MW halo in a shorter timescale relative to the elastic scale, resulting in a larger core size. Inelastic collisions also isotropize the orbits, resulting in an overall lower velocity anisotropy for the inelastic MW halo. In the inner halo, the inelastic SIDM case (minor-to-major axis ratio s ≡ c/a ≈ 0.65) is more spherical than the CDM (s ≈ 0.4), but less spherical than the elastic SIDM case (s ≈ 0.75). The speed distribution f(v) of dark matter particles at the location of the Sun in the inelastic SIDM model shows a significant departure from the CDM model, with f(v) falling more steeply at high speeds. In addition, the velocity kicks imparted during inelastic collisions produce unbound high-speed particles with velocities up to 500 km s−1 throughout the halo. This implies that inelastic SIDM can potentially leave distinct signatures in direct detection experiments, relative to elastic SIDM and CDM.


2020 ◽  
Vol 500 (1) ◽  
pp. 310-318
Author(s):  
Roberto De Propris ◽  
Michael J West ◽  
Felipe Andrade-Santos ◽  
Cinthia Ragone-Figueroa ◽  
Elena Rasia ◽  
...  

ABSTRACT We explore the persistence of the alignment of brightest cluster galaxies (BCGs) with their local environment. We find that a significant fraction of BCGs do not coincide with the centroid of the X-ray gas distribution and/or show peculiar velocities (they are not at rest with respect to the cluster mean). Despite this, we find that BCGs are generally aligned with the cluster mass distribution even when they have significant offsets from the X-ray centre and significant peculiar velocities. The large offsets are not consistent with simple theoretical models. To account for these observations BCGs must undergo mergers preferentially along their major axis, the main infall direction. Such BCGs may be oscillating within the cluster potential after having been displaced by mergers or collisions, or the dark matter halo itself may not yet be relaxed.


2020 ◽  
Vol 501 (1) ◽  
pp. L71-L75
Author(s):  
Cornelius Rampf ◽  
Oliver Hahn

ABSTRACT Perturbation theory is an indispensable tool for studying the cosmic large-scale structure, and establishing its limits is therefore of utmost importance. One crucial limitation of perturbation theory is shell-crossing, which is the instance when cold-dark-matter trajectories intersect for the first time. We investigate Lagrangian perturbation theory (LPT) at very high orders in the vicinity of the first shell-crossing for random initial data in a realistic three-dimensional Universe. For this, we have numerically implemented the all-order recursion relations for the matter trajectories, from which the convergence of the LPT series at shell-crossing is established. Convergence studies performed at large orders reveal the nature of the convergence-limiting singularities. These singularities are not the well-known density singularities at shell-crossing but occur at later times when LPT already ceased to provide physically meaningful results.


Sign in / Sign up

Export Citation Format

Share Document