scholarly journals Reaction force of gravitational radiation in an effective-one-body theory based on the post-Minkowskian approximation

2021 ◽  
Vol 81 (9) ◽  
Author(s):  
Manman Sun ◽  
Shuai Chen ◽  
Xiaokai He ◽  
Jiliang Jing

AbstractEffective-one-body (EOB) theory based on the post-Newtonian (PN) approximation presented by Buonanno and Damour plays an important role in the analysis of gravitational wave signals. Based on the post-Minkowskian (PM) approximation, Damour introduced another novel EOB theory which will lead to theoretically improved versions of the EOB conservative dynamics and might be useful in the upcoming era of high signal-to-noise-ratio gravitational-wave observations. Using the 2PM effective metric obtained by us recently, in this paper we study the radiation reaction force experienced by the particle with the help of the energy-loss-rate, which is an important step to construct the EOB theory based on the PM approximation.

Author(s):  
Steven A. Balbus

A very simple and physical derivation of the conservation equation for the propagation of gravitational radiation is presented. The formulation is exact. The result takes the readily recognisable and intuitive form of a Poynting-style equation, in which the outward propagation of stress energy is directly related to the volumetric equivalent of a radiation reaction force acting back upon the sources, including the purely gravitational contribution to the sources. Upon averaging, the emergent pseudo tensor for the gravitational radiation is in exact agreement with that found by much more labour-intensive methods.


1993 ◽  
Vol 3 (11) ◽  
pp. 2151-2159 ◽  
Author(s):  
Claudia Eberlein

Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter presents the basics of the ‘effective-one-body’ approach to the two-body problem in general relativity. It also shows that the 2PN equations of motion can be mapped. This can be done by means of an appropriate canonical transformation, to a geodesic motion in a static, spherically symmetric spacetime, thus considerably simplifying the dynamics. Then, including the 2.5PN radiation reaction force in the (resummed) equations of motion, this chapter provides the waveform during the inspiral, merger, and ringdown phases of the coalescence of two non-spinning black holes into a final Kerr black hole. The chapter also comments on the current developments of this approach, which is instrumental in building the libraries of waveform templates that are needed to analyze the data collected by the current gravitational wave detectors.


2015 ◽  
Vol 81 (5) ◽  
Author(s):  
E. Hirvijoki ◽  
J. Decker ◽  
A. J. Brizard ◽  
O. Embréus

In this paper, we present the guiding-centre transformation of the radiation–reaction force of a classical point charge travelling in a non-uniform magnetic field. The transformation is valid as long as the gyroradius of the charged particles is much smaller than the magnetic field non-uniformity length scale, so that the guiding-centre Lie-transform method is applicable. Elimination of the gyromotion time scale from the radiation–reaction force is obtained with the Poisson-bracket formalism originally introduced by Brizard (Phys. Plasmas, vol. 11, 2004, 4429–4438), where it was used to eliminate the fast gyromotion from the Fokker–Planck collision operator. The formalism presented here is applicable to the motion of charged particles in planetary magnetic fields as well as in magnetic confinement fusion plasmas, where the corresponding so-called synchrotron radiation can be detected. Applications of the guiding-centre radiation–reaction force include tracing of charged particle orbits in complex magnetic fields as well as the kinetic description of plasma when the loss of energy and momentum due to radiation plays an important role, e.g. for runaway-electron dynamics in tokamaks.


Sign in / Sign up

Export Citation Format

Share Document