scholarly journals Probing the parameters of a Schwarzschild black hole surrounded by quintessence and cloud of strings through four standard astrophysical tests

2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Víctor H. Cárdenas ◽  
Mohsen Fathi ◽  
Marco Olivares ◽  
J. R. Villanueva

AbstractIn this paper, we concern about applying general relativistic tests on the spacetime produced by a static black hole associated with cloud of strings, in a universe filled with quintessence. The four tests we apply are precession of the perihelion in the planetary orbits, gravitational redshift, deflection of light, and the Shapiro time delay. Through this process, we constrain the spacetime’s parameters in the context of the observational data, which results in about $$\sim 10^{-9}$$ ∼ 10 - 9 for the cloud of strings parameter, and $$\sim 10^{-20}$$ ∼ 10 - 20  m$$^{-1}$$ - 1 for that of quintessence. The response of the black hole to the gravitational perturbations is also discussed.

2002 ◽  
Vol 17 (20) ◽  
pp. 2752-2752
Author(s):  
VITOR CARDOSO ◽  
JOSÉ P. S. LEMOS

We studied the quasi-normal modes (QNM) of electromagnetic and gravitational perturbations of a Schwarzschild black hole in an asymptotically anti-de Sitter (AdS) spacetime, extending previous works1,2 on the subject. Some of the electromagnetic modes do not oscillate, they only decay, since they have pure imaginary frequencies. The gravitational modes show peculiar features: the odd and even gravitational perturbations no longer have the same characteristic quasinormal frequencies. There is a special mode for odd perturbations whose behavior differs completely from the usual one in scalar1 and electromagnetic perturbation in an AdS spacetime, but has a similar behavior to the Schwarzschild black hole3 in an asymptotically flat spacetime: the imaginary part of the frequency goes as [Formula: see text], where r+ is the horizon radius. We also investigated the small black hole limit showing that the imaginary part of the frequency goes as [Formula: see text]. These results are important to the AdS/CFT4 conjecture since according to it the QNMs describe the approach to equilibrium in the conformal field theory. For other geometries see5,6.


2000 ◽  
Vol 15 (19) ◽  
pp. 2979-2986 ◽  
Author(s):  
S. S. XULU

In this paper we obtain the energy distribution associated with the Ernst space–time (geometry describing Schwarzschild black hole in Melvin's magnetic universe) in Einstein's prescription. The first term is the rest-mass energy of the Schwarzschild black hole, the second term is the classical value for the energy of the uniform magnetic field and the remaining terms in the expression are due to the general relativistic effect. The presence of the magnetic field is found to increase the energy of the system.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
P. A. González ◽  
Marco Olivares ◽  
Eleftherios Papantonopoulos ◽  
Yerko Vásquez

AbstractWe study the motion of particles in the background of a scalar–tensor theory of gravity in which the scalar field is kinetically coupled to the Einstein tensor. We constrain the value of the derivative parameter z through solar system tests. By considering the perihelion precession we obtain the constraint $$\sqrt{z}/m_{\mathrm{p}} > 2.6\times 10^{12}$$ z / m p > 2.6 × 10 12  m, the gravitational redshift $$\frac{\sqrt{z}}{m_{\mathrm{p}}}>2.7\times 10^{\,10}$$ z m p > 2.7 × 10 10  m, the deflection of light $$\sqrt{z}/m_{\mathrm{p}} > 1.6 \times 10^{11}$$ z / m p > 1.6 × 10 11  m, and the gravitational time delay $$\sqrt{z}/m_{\mathrm{p}} > 7.9 \times 10^{12}$$ z / m p > 7.9 × 10 12  m; thereby, our results show that it is possible to constrain the value of the z parameter in agreement with the observational tests that have been considered.


2008 ◽  
Vol 86 (11) ◽  
pp. 1265-1285 ◽  
Author(s):  
M Sharif ◽  
G Mustafa

We study the wave properties of a cold isothermal plasma in the vicinity of a Schwarzschild black-hole event horizon. The Fourier-analyzed perturbed 3+1 general relativistic magnetohydrodynamics equations are examined such that the complex dispersion relations are obtained for nonrotating, rotating nonmagnetized, and rotating magnetized backgrounds. The propagation and attenuation vectors along with the refractive index are obtained (shown graphically) to study the dispersive properties of the medium near the event horizon. The results show that no information can be obtained from the Schwarzschild magnetosphere. Further, the pressure stops the existence of normal dispersion of waves.PACS Nos.: 95.30.Sf, 95.30.Qd, 04.30.Nk


1986 ◽  
Vol 01 (03) ◽  
pp. 709-729 ◽  
Author(s):  
O.J. KWON ◽  
Y.D. KIM ◽  
Y.S. MYUNG ◽  
B.H. CHO ◽  
Y.J. PARK

For the nontachyonic mass (c<0, µ2<6), we have found that all nonstatic perturbations (odd-, even-parity and scalar perturbations) allow only the real values of frequency k. This means that the black hole in the massive Brans-Dicke theory is classically stable. However, for the tachyonic mass of scalar field (c>0, µ2>6), we find that the massive Brans-Dicke theory is classically unstable. We also emphasize that the potential forms of odd-parity perturbations is simply given by the pure-gravitational perturbations. For the even-parity case, we obtain the same potential just as Zerilli’s case by combining the even-parity gravitational wave and scalar wave. For static perturbations (k=0) and c>0, only the odd- and even-parity cases with L=0, 1 is allowed to avoid exponentially growing modes.


Sign in / Sign up

Export Citation Format

Share Document