scholarly journals Inversion of force lines in fiber-reinforced jammed granular material

2021 ◽  
Vol 44 (4) ◽  
Author(s):  
Pavel S. Iliev ◽  
Falk K. Wittel ◽  
Hans J. Herrmann

Abstract Freestanding columns, built out of nothing but loose gravel and continuous strings can be stable even at several meters in height and withstand vertical loads high enough to severely fragment grains of the column core. We explain this counter-intuitive behavior through dynamic simulations with polyhedral rigid particles and elastic wire chains. We evaluate the fine structure of the particle contact networks, as well as confining forces and reveal fundamental intrinsic differences to the well-studied case of confining silos. Graphic abstract

1968 ◽  
Vol 38 (1) ◽  
pp. 193-201 ◽  
Author(s):  
Sanford L. Palay ◽  
Constantino Sotelo ◽  
Alan Peters ◽  
Paula M. Orkand

Axon hillocks and initial segments have been recognized and studied in electron micrographs of a wide variety of neurons. In all multipolar neurons the fine structure of the initial segment has the same pattern, whether or not the axon is ensheathed in myelin. The internal structure of the initial segment is characterized by three special features: (a) a dense layer of finely granular material undercoating the plasma membrane, (b) scattered clusters of ribosomes, and (c) fascicles of microtubules. A similar undercoating occurs beneath the plasma membrane of myelinated axons at nodes of Ranvier. The ribosomes are not organized into Nissl bodies and are too sparsely distributed to produce basophilia. They vanish at the end of the initial segment. Fascicles of microtubules occur only in the axon hillock and initial segment and nowhere else in the neuron. Therefore, they are the principal identifying mark. Some speculations are presented on the relation between these special structural features and the special function of the initial segment.


1967 ◽  
Vol 15 (1) ◽  
pp. 25 ◽  
Author(s):  
RC Foster

The tylosis wall in Eucalyptus obliqua L'Herit. is shown to be composed of two microfibrillar layers. The outer layer (T1), with randomly orientated microfibrils, is covered with amorphous granular material. The inner layer (T2) is multilamellate. In sclerosed tyloses of E. miniata A. Cunn., each lamella of T2 is composed of many layers of microfibrils. Simple pits, delineated by circumferentially orientated microfibrils, are found in both sclerosed and non-sclerosed tyloses. The tylosis in E. obliqua is shown to arise from a two-layered structure formed within the secondary wall of the ray cell. This layer extends into the pit chamber, covering the pit membrane on the ray side. Following the breakdown of the vestures and the pit membrane, this double layer bulges out into the vessel to form the tylosis.


2015 ◽  
Vol 30 (0) ◽  
pp. 89-96
Author(s):  
Shintaro MIYAMOTO ◽  
Noriyuki NAYASUFUKU ◽  
Ryohei ISHIKURA ◽  
Kiyonobu KASAMA

1962 ◽  
Vol 15 (2) ◽  
pp. 279-287 ◽  
Author(s):  
R. E. Kane

The fine structure of the mitotic apparatus isolated from the sea urchin egg has been investigated. The isolation was accomplished by lysis of metaphase eggs in a 1 M solution of hexanediol, buffered at pH 6. The fine structure of the isolated apparatus was studied after fixation with osmium tetroxide directly in the isolation medium. The spindle is composed of fine fibrils, approximately 20 mµ in diameter, which appear tubular. Similar fibrils, radially oriented, are found in the aster. If the isolated mitotic apparatus is exposed to water at pH 6 before fixation, the structure is considerably modified. The most pronounced effects are an increase in the number of large membrane-bounded vesicles and in the amount of free granular material present. The conditions necessary for the fixation of the mitotic apparatus in dividing cells are discussed in the light of these observations on the isolated unit.


1965 ◽  
Vol 24 (1) ◽  
pp. 95-116 ◽  
Author(s):  
Patricia C. Baker

The blastoporal groove of the early gastrula of the treefrog, Hyla regilla, was examined with the electron microscope. The innermost extension of the groove is lined with invaginating flask- and wedge-shaped cells of entoderm and mesoderm. The distal surfaces of these cells bear microvilli which are underlain with an electron-opaque layer composed of fine granular material and fibrils. The dense layer and masses of vesicles proximal to it fill the necks of the cells. In flask cells bordering the forming archenteron the vesicles are replaced by large vacuoles surrounded by layers of membranes. The cells lining the groove are tightly joined at their distal ends in the region of the dense layer. Proximally, the cell bodies are separated by wide intercellular spaces. The cell body, which is migrating toward the interior of the gastrula, contains the nucleus plus other organalles and inclusions common to amphibian gastrular cells. A dense layer of granular material, vesicles, and membranes lies beneath the surface of the cell body and extends into pseudopodium-like processes and surface undulations which cross the intercellular spaces. A special mesodermal cell observed in the dorsal lining of the groove is smaller and denser than the surrounding presumptive chordamesodermal cells. A long finger of cytoplasm, filled with a dense layer, vesicles and membranes, extends from its distal surface along the edge of the groove, ending in a tight interlocking with another mesodermal cell. Some correlations between fine structure and the mechanics of gastrulation are discussed, and a theory of invagination is proposed, based on contraction and expansion of the dense layer and the tight junctions at distal cell surfaces.


1968 ◽  
Vol 3 (1) ◽  
pp. 41-47
Author(s):  
J. D. DODGE

The chloroplasts of some members of the Dinophyceae are bounded by an envelope consisting of three membranes and having a mean thickness of 230 A°. Within the chloroplast are arranged, in a more or less parallel manner, many lamellae normally composed of three apposed thylakoids, although the number of thylakoids often varies and may reach 30 in a single stack. By study of disintegrated chloroplasts it was found that the thylakoids are circular in shape with a diameter of 0.15-3.6 µ and a mean thickness of 240 A°;. Ribosomes, lipid droplets and DNA areas are present in the chloroplast stroma. No connexions were seen between the chloroplasts and any other organelles, nor did the chloroplasts contain girdle lamellae. Stalked pyrenoids, which are found in some dinoflagellates, are shown to arise from the inner face of the chloroplasts, to contain a finely granular material and to be frequently surrounded by an electron-transparent area. These findings are discussed in relation to the fine structure of the chloroplasts and pyrenoids of other algal classes.


Author(s):  
W. H. Zucker ◽  
R. G. Mason

Platelet adhesion initiates platelet aggregation and is an important component of the hemostatic process. Since the development of a new form of collagen as a topical hemostatic agent is of both basic and clinical interest, an ultrastructural and hematologic study of the interaction of platelets with the microcrystalline collagen preparation was undertaken.In this study, whole blood anticoagulated with EDTA was used in order to inhibit aggregation and permit study of platelet adhesion to collagen as an isolated event. The microcrystalline collagen was prepared from bovine dermal corium; milling was with sharp blades. The preparation consists of partial hydrochloric acid amine collagen salts and retains much of the fibrillar morphology of native collagen.


Author(s):  
E. Horvath ◽  
K. Kovacs ◽  
G. Penz ◽  
C. Ezrin

Follicular structures, in the rat pituitary, composed of cells joined by junctional complexes and possessing few organelles and few, if any, secretory granules, were first described by Farquhar in 1957. Cells of the same description have since been observed in several species including man. The importance of these cells, however, remains obscure. While studying human pituitary glands, we have observed wide variations in the fine structure of follicular cells which may lead to a better understanding of their morphogenesis and significance.


Sign in / Sign up

Export Citation Format

Share Document