scholarly journals Theoretical challenges for flavor physics

2021 ◽  
Vol 136 (9) ◽  
Author(s):  
Yuval Grossman ◽  
Zoltan Ligeti

AbstractWe discuss some highlights of the FCC-$$ee$$ ee flavor physics program. It will help to explore various aspects of flavor physics: to test precision calculations, to probe nonperturbative QCD methods, and to increase the sensitivity to physics beyond the standard model. In some areas, FCC-$$ee$$ ee will do much better than current and near-future experiments. We briefly discuss several probes that can be relevant for maximizing the gain from the FCC-$$ee$$ ee flavor program.

2006 ◽  
Vol 21 (27) ◽  
pp. 5381-5403 ◽  
Author(s):  
Ian Shipsey

The role of charm in testing the Standard Model description of quark mixing and CP violation through measurements of lifetimes, decay constants and semileptonic form factors is reviewed. Together with Lattice QCD, charm has the potential this decade to maximize the sensitivity of the entire flavor physics program to new physics and pave the way for understanding physics beyond the Standard Model at the LHC in the coming decade. The status of indirect searches for physics beyond the Standard Model through charm mixing, CP-violation and rare decays is also reported.


2005 ◽  
Vol 20 (22) ◽  
pp. 5119-5132 ◽  
Author(s):  
I. SHIPSEY

The role of charm in testing the Standard Model description of quark mixing and CP violation through measurements of lifetimes, decay constants and semileptonic form factors is reviewed. Together with Lattice QCD, charm has the potential this decade to maximize the sensitivity of the entire flavor physics program to new physics. and pave the way for understanding physics beyond the Standard Model at the LHC in the coming decade. The status of indirect searches for physics beyond the Standard Model through charm mixing, CP-violation and rare decays is also reported.


2018 ◽  
Vol 179 ◽  
pp. 01002
Author(s):  
Giovanni De Lellis

The discovery of the Higgs boson has fully confirmed the Standard Model of particles and fields. Nevertheless, there are still fundamental phenomena, like the existence of dark matter and the baryon asymmetry of the Universe, which deserve an explanation that could come from the discovery of new particles. The SHiP experiment at CERN meant to search for very weakly coupled particles in the few GeV mass domain has been recently proposed. The existence of such particles, foreseen in different theoretical models beyond the Standard Model, is largely unexplored. A beam dump facility using high intensity 400 GeV protons is a copious source of such unknown particles in the GeV mass range. The beam dump is also a copious source of neutrinos and in particular it is an ideal source of tau neutrinos, the less known particle in the Standard Model. Indeed, tau anti-neutrinos have not been directly observed so far. We report the physics potential of such an experiment including the tau neutrino magnetic moment.


2018 ◽  
Vol 182 ◽  
pp. 02096
Author(s):  
James Pinfold

MoEDAL is a pioneering experiment designed to search for highly ionizing messengers of new physics such as magnetic monopoles or massive (pseudo-)stable charged particles, that are predicted to exist in a plethora of models beyond the Standard Model. It started data taking at the LHC at a centre-of-mass energy of 13 TeV, in 2015. MoEDAL’s ground breaking physics program defines a number of scenarios that yield potentially revolutionary insights into such foundational questions as: are there extra dimensions or new symmetries; what is the mechanism for the generation of mass; does magnetic charge exist; and what is the nature of dark matter. MoEDAL’s purpose is to meet such far-reaching challenges at the frontier of the field. We will present an overview of the MoEDAL detector, including the planned MAPP subdetector, as well as MoEDAL’s physics program. The concluding section highlights our first physics results on Magnetic Monopole production, that are the world’s best for Monopoles with multiple magnetic charge.


2002 ◽  
Vol 17 (26) ◽  
pp. 1713-1724 ◽  
Author(s):  
S. N. GNINENKO ◽  
N. V. KRASNIKOV ◽  
A. RUBBIA

Possible manifestations of new physics in rare (exotic) decays of orthopositronium (o - Ps) are briefly reviewed. It is pointed out that models with infinite additional dimension(s) of Randall–Sundrum type predict disappearance of orthopositronium into additional dimension(s). The experimental signature of this effect is the invisible decay of orthopositronium. We point out that this process may occur at a rate within two or three orders of magnitude of the present experimental upper limit. We also propose a model with a light weakly interacting boson leading to o - Ps → invisible decays at the experimentally interesting rate. We discuss this in details and stress that the existence of invisible decay of orthopositronium in vacuum could explain the o - Ps decay rate puzzle. Thus, our result enhances the existing motivation and justifies efforts for a more sensitive search for o - Ps → invisible decay in a near future experiment.


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Xue Gong ◽  
Chong-Xing Yue ◽  
Hai-Mei Yu ◽  
Dong Li

AbstractExistences of vector-like quarks (VLQs) are predicted in many new physics scenarios beyond the Standard Model (SM). We study the possibility of detecting the vector-like bottom quark (VLQ-B) being the SU(2) singlet with electric charge $$-1/3$$ - 1 / 3 at Large Hadron electron Collider (LHeC) in a model-independent framework. The decay properties and single production of VLQ-B at the LHeC are explored. Three types of signatures are investigated. By carrying out a fast simulation for the signals and the corresponding backgrounds, the signal significances are obtained. Our numerical results show that detecting of VLQ-B via the semileptonic channel is better than via the fully hadronic or leptonic channel.


2013 ◽  
Vol 28 (16) ◽  
pp. 1330026
Author(s):  
STEVE NAHN ◽  
DMITRI TSYBYCHEV

The large hadron collider (LHC) physics program is finally on the way to help uncover the mechanism responsible for electroweak symmetry breaking, with each of experiments collecting up to 5 fb-1 of data at center-of-mass energy of 7 TeV. In this review, we summarize searches for physics beyond the Standard Model at ATLAS and CMS experiments at LHC.


2021 ◽  
Vol 57 (7) ◽  
Author(s):  
Matthew Wingate

AbstractFor a long time, investigation into the weak interactions of quarks has guided us toward understanding the Standard Model we know today. Now in the era of high precision, these studies are still one of the most promising avenues for peering beyond the Standard Model. This is a large-scale endeavour with many tales and many protagonists. In these pages I follow a few threads of a complex story, those passing through the realm of lattice gauge theory.


2004 ◽  
Vol 19 (06) ◽  
pp. 907-917 ◽  
Author(s):  
Y. GROSSMAN

In the first part of the talk the flavor physics input to models beyond the Standard Model is described. One specific example of such a new physics model is given: a model with bulk fermions in one non-factorizable extra dimension. In the second part of the talk we discuss several observables that are sensitive to new physics. We explain what type of new physics can produce deviations from the Standard Model predictions in each of these observables.


Quarks and leptons are used as basic building blocks in the construction of more complete theories beyond the standard model. Some of these are discussed, including grand unified theories and supersymmetry. The prospects for experimental tests of these ideas both now and in the near future are reviewed.


Sign in / Sign up

Export Citation Format

Share Document