Forced vibration analyses of FGP shallow shells with variable curvature

2021 ◽  
Vol 136 (10) ◽  
Author(s):  
J. Lu ◽  
C. Chiu ◽  
X. Zhang ◽  
S. Li ◽  
Z. Meng ◽  
...  
1993 ◽  
Author(s):  
R. HEUER ◽  
H. IRSCNIK ◽  
F. ZIEGLER ◽  
FELLOW ASME

2020 ◽  
Vol 92 (6) ◽  
pp. 3-12
Author(s):  
A.G. KOLESNIKOV ◽  

Geometric nonlinearity shallow shells on a square and rectangular plan with constant and variable thickness are considered. Loss of stability of a structure due to a decrease in the rigidity of one of the support (transition from fixed support to hinged support) is considered. The Bubnov-Galerkin method is used to solve differential equations of shallow geometrically nonlinear shells. The Vlasov's beam functions are used for approximating. The use of dimensionless quantities makes it possible to repeat the calculations and obtain similar dependences. The graphs are given that make it possible to assess the reduction in the critical load in the shell at each stage of reducing the rigidity of the support and to predict the further behavior of the structure. Regularities of changes in internal forces for various types of structure support are shown. Conclusions are made about the necessary design solutions to prevent the progressive collapse of the shell due to a decrease in the rigidity of one of the supports.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4309
Author(s):  
Wojciech Wach ◽  
Jakub Zębala

Tire yaw marks deposited on the road surface carry a lot of information of paramount importance for the analysis of vehicle accidents. They can be used: (a) in a macro-scale for establishing the vehicle’s positions and orientation as well as an estimation of the vehicle’s speed at the start of yawing; (b) in a micro-scale for inferring among others things the braking or acceleration status of the wheels from the topology of the striations forming the mark. A mathematical model of how the striations will appear has been developed. The model is universal, i.e., it applies to a tire moving along any trajectory with variable curvature, and it takes into account the forces and torques which are calculated by solving a system of non-linear equations of vehicle dynamics. It was validated in the program developed by the author, in which the vehicle is represented by a 36 degree of freedom multi-body system with the TMeasy tire model. The mark-creating model shows good compliance with experimental data. It gives a deep view of the nature of striated yaw marks’ formation and can be applied in any program for the simulation of vehicle dynamics with any level of simplification.


Sign in / Sign up

Export Citation Format

Share Document