Optimal fuzzy PD control for a two-link robot manipulator based on stochastic fractal search

Author(s):  
The Anh Mai ◽  
Thai Son Dang
2010 ◽  
Vol 22 (4) ◽  
pp. 551-560
Author(s):  
Ahmed Foad Amer ◽  
◽  
Elsayed Abdelhameed Sallam ◽  
Wael Mohammed Elawady ◽  

Industrial robot control covers nonlinearity, uncertainty and external perturbation considered in control laws design. Proportional and Derivative (PD) with gravity compensation control is well-known control used in manipulators to ensure global asymptotic stability for fixed symmetrical positive definite gain matrices. To enhance PD with gravity compensation controller performance, in this paper, we propose hybrid fuzzy PD control precompensation with gravity compensation, consisting of a fuzzy logic-based precompensator followed by hybrid fuzzy PD with gravity compensation controller. Hybrid fuzzy control is done by a Supervisory Hierarchical Fuzzy Controller (SHFC) for tuning conventional controller Proportional and Derivative gains based on actual tracking location and velocity error. Hierarchical hybrid fuzzy control consists of an intelligent upper supervisory fuzzy controller and a lower direct conventional PD controller. Numerical simulations using the dynamic model of a three DOF planar rigid robot manipulator with uncertainty show the effectiveness of the approach in trajectory tracking problems. Our results show that the proposal controller has performance superior to a conventional controller.


2020 ◽  
Vol 14 ◽  
Author(s):  
Luis Arturo Soriano ◽  
Erik Zamora ◽  
J. M. Vazquez-Nicolas ◽  
Gerardo Hernández ◽  
José Antonio Barraza Madrigal ◽  
...  

A Proportional Integral Derivative (PID) controller is commonly used to carry out tasks like position tracking in the industrial robot manipulator controller; however, over time, the PID integral gain generates degradation within the controller, which then produces reduced stability and bandwidth. A proportional derivative (PD) controller has been proposed to deal with the increase in integral gain but is limited if gravity is not compensated for. In practice, the dynamic system non-linearities frequently are unknown or hard to obtain. Adaptive controllers are online schemes that are used to deal with systems that present non-linear and uncertainties dynamics. Adaptive controller use measured data of system trajectory in order to learn and compensate the uncertainties and external disturbances. However, these techniques can adopt more efficient learning methods in order to improve their performance. In this work, a nominal control law is used to achieve a sub-optimal performance, and a scheme based on a cascade neural network is implemented to act as a non-linear compensation whose task is to improve upon the performance of the nominal controller. The main contributions of this work are neural compensation based on a cascade neural networks and the function to update the weights of neural network used. The algorithm is implemented using radial basis function neural networks and a recompense function that leads longer traces for an identification problem. A two-degree-of-freedom robot manipulator is proposed to validate the proposed scheme and compare it with conventional PD control compensation.


2014 ◽  
Vol 19 (2) ◽  
pp. 512-523 ◽  
Author(s):  
Indrazno Siradjuddin ◽  
Laxmidhar Behera ◽  
T. Martin McGinnity ◽  
Sonya Coleman

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Junfeng Wu ◽  
Wanying Zhang ◽  
Shengda Wang

Sign in / Sign up

Export Citation Format

Share Document