An effective equation for quasi-one-dimensional funnel-shaped Bose–Einstein condensates with embedded vorticity

Author(s):  
Mateus C. P. dos Santos ◽  
Wesley B. Cardoso ◽  
Boris A. Malomed
2019 ◽  
Vol 383 (13) ◽  
pp. 1435-1440 ◽  
Author(s):  
Mateus C.P. dos Santos ◽  
Wesley B. Cardoso

2016 ◽  
Vol 30 (26) ◽  
pp. 1650186
Author(s):  
B. Yavidov ◽  
SH. Djumanov ◽  
T. Saparbaev ◽  
O. Ganiyev ◽  
S. Zholdassova ◽  
...  

Having accepted a more generalized form for density-displacement type electron–phonon interaction (EPI) force we studied the simultaneous effect of uniaxial strains and EPI’s screening on the temperature of Bose–Einstein condensation [Formula: see text] of the ideal gas of intersite bipolarons. [Formula: see text] of the ideal gas of intersite bipolarons is calculated as a function of both strain and screening radius for a one-dimensional chain model of cuprates within the framework of Extended Holstein–Hubbard model. It is shown that the chain model lattice comprises the essential features of cuprates regarding of strain and screening effects on transition temperature [Formula: see text] of superconductivity. The obtained values of strain derivatives of [Formula: see text] [Formula: see text] are in qualitative agreement with the experimental values of [Formula: see text] [Formula: see text] of La[Formula: see text]Sr[Formula: see text]CuO4 under moderate screening regimes.


2015 ◽  
Vol 24 (05) ◽  
pp. 1550033 ◽  
Author(s):  
Guillermo Chacón-Acosta ◽  
Héctor H. Hernandez-Hernandez

In this work we study a completely degenerate Fermi gas at zero temperature by a semiclassical approximation for a Hamiltonian that arises in polymer quantum mechanics. Polymer quantum systems are quantum mechanical models quantized in a similar way as in loop quantum gravity, allowing the study of the discreteness of space and other features of the loop quantization in a simplified way. We obtain the polymer modified thermodynamical properties for this system by noticing that the corresponding Fermi energy is exactly the same as if one directly polymerizes the momentum pF. We also obtain the expansion of the corresponding thermodynamical variables in terms of small values of the polymer length scale λ. We apply these results to study a simple model of a compact one-dimensional star where the gravitational collapse is supported by electron degeneracy pressure. As a consequence, polymer corrections to the mass of the object are found. By using bounds for the polymer length found in Bose–Einstein condensates experiments we compute the modification in the mass of the compact object due to polymer effects of order ~ 10-8. This result is similar to the other order found by different approaches such as generalized uncertainty principle (GUP), and that certainly is within the error reported in typical measurements of white dwarf masses.


2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Alessandro Fabbri ◽  
Nicolas Pavloff

We study the two-body momentum correlation signal in a quasi one dimensional Bose-Einstein condensate in the presence of a sonic horizon. We identify the relevant correlation lines in momentum space and compute the intensity of the corresponding signal. We consider a set of different experimental procedures and identify the specific issues of each measuring process. We show that some inter-channel correlations, in particular the Hawking quantum-partner one, are particularly well adapted for witnessing quantum non-separability, being resilient to the effects of temperature and/or quantum quenches.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012200
Author(s):  
K G Zloshchastiev

Abstract We recall the experimental data of one-dimensional axial propagation of sound near the center of the Bose-Einstein condensate cloud, which used the optical dipole force method of a focused laser beam and rapid sequencing of nondestructive phase-contrast images. We reanalyze these data within the general quantum fluid framework but without model-specific theoretical assumptions; using the standard best fit techniques. We demonstrate that some of their features cannot be explained by means of the perturbative two-body approximation and Gross-Pitaevskii model, and conjecture possible solutions.


Sign in / Sign up

Export Citation Format

Share Document